Air Passive Dosing of Toluene Increases Accessibility of PAHs for Microbial Degradation

Humel, Stefan; Zaknun, Cathrine; Mayer, Philipp; Loibner, Andreas P.

Publication date: 2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Air Passive Dosing of Toluene Increases Accessibility of PAHs for Microbial Degradation

Stefan Humel¹, Cathrine Zaknun¹, Philipp Mayer² and Andreas P. Loibner¹

1 BOKU - University of Natural Resources and Life Sciences, Vienna
IFA-Tulln - Department of Agrobiotechnology, 3430 Tulln, Austria
2 DTU Environment, Miljøvej, Building 113, 2800 Kgs. Lyngby, Denmark
contact: andreas.loibner@boku.ac.at

Introduction

Polycyclic Aromatic Hydrocarbons (PAHs) adsorbed to soil constituents such as black carbon are inaccessible for microbial degradation. Competitive sorption can be used to release inaccessible PAHs from high affinity sorption sites¹. In this study a novel air passive dosing setup was introduced to introduce toluene into soil as a biodegradable competitive sorbent for PAHs.

Hypothesis

π-π electron donor-acceptor interactions are the primary sorptive force for the adsorption of aromatic pollutants to high affinity sites². As adsorption to such sites is subject to competition, the addition of excessive amounts of a competitor will enhance the release of retained organic pollutants so making them accessible for biodegradation.

Method & materials

Soil: Prior to Air Passive Dosing of toluene, industrially contaminated soil was exposed to microbiological degradation. The residual PAH concentration of so pretreated soil amounted to 325 ± 6 mg kg⁻¹ (Σ 16 US EPA PAH).

Accessibility: The share of desorption resistant PAHs in this soil was quantified using the Contaminant Trap³, which captures desorbing PAHs in an ‘infinite’ sorption sink formed out of silicone and activated carbon.

Air Passive Dosing: Silicone rods out of Polydimethylsiloxane (PDMS) were loaded with toluene. They served as source for the partitioning of toluene into the gas phase and subsequently into soil slurry, leading to competitive sorption to soil constituents.

Microbial Activity: Microbiological activity was verified before and after air passive dosing of toluene by the detection of the 16S ribosomal RNA.

Results & Conclusions

- High concentrations of toluene as a competitive sorbate can be maintained in soil slurry by passive dosing via the gas phase (Figure 1).
- Competitive sorption of toluene significantly reduced the desorption resistant fraction of PAHs in soil (Figure 3 & Figure 4).
- The presence of active PAH degraders (16S RNA) after toluene exposure indicates ongoing biodegradation of PAHs (Figure 2).

References:

