Modification of Commercial Polyethersulfone Membranes

Libor Zverina and Anders Egede Daugaard

Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Kgs. Lyngby, Denmark

Polyethersulfone is a widely used ultrafiltration membrane material thanks to its good film-forming and membrane-forming properties, thermal stability, chemical inertness, and mechanical strength. Polyethersulfone membranes find a range of applications in food processing [1], biomedical field [2], and water-treatment technologies [3]. However, the hydrophobic nature of polyethersulfone brings a challenge of higher fouling propensity of these membranes.

In the presented work commercial polyethersulfone membranes have been surface-grafted with a hydrophilic polymer. The membranes were activated by a heterogeneous reaction introducing benzyl chloride functionality from which surface-initiated atom transfer radical polymerization was conducted (Figure 1) [4]. It has been shown that the graft density and chain length of the surface polymer graft can be controlled.

These results in combination with versatility of the used polymerization technique offer a tool to tailor the surface properties of commercial polyethersulfone membranes and open up for a wider range of their application.

Figure 1: Heterogeneous activation reaction of a commercial polyethersulfone membrane followed by grafting of a hydrophilic polymer via surface-initiated atom transfer radical polymerization.

References