Diagnostics, Monitoring and Mitigation of N2O Emissions from Wastewater Treatment Operations – Outcomes of the LAGAS project

Jensen, Marlene Mark; Smets, Barth F.; Ekström, Sara Elisabet Margareta; Vansgaard, A. K.; Lemaire, R.; Plósz, Benedek G.; Domingo-Felez, Carlos; Thamdrup, Bo; Ma, Chun; Delre, Antonio; Scheutz, Charlotte; Thornberg, D.

Published in:

Publication date:
2018

Document Version
Version created as part of publication process; publisher's layout; not normally made publicly available

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Abstract

Nitrous oxide (N$_2$O) is a potential ozone depleter and strong greenhouse gas (GHG), with a warming potential ~300 times higher than carbon dioxide (CO$_2$). Anthropogenic N$_2$O emissions - of which 1.2% originate from the wastewater treatment (WWT) sector - is increasing at alarming rates. The goals of the LaGas project were to quantify N$_2$O emissions, and identify and quantify the mechanisms and factors controlling N$_2$O production and emissions from both conventional and recent biological N removal technologies, and to capture this information in novel predictive models with the aim to identify and implement mitigation strategies to control N$_2$O emissions.

With the tracer gas dispersion method, we quantified a plant-integrated GHG emission of five WWT plants (WWTPs), representing different configurations. The emission factors for CH$_4$ ranged between 0.2 to 3.2% of the influent organic carbon, while the N$_2$O emission factor ranged between 0.1 to 5.2% of the total nitrogen, both in the upper range of previous published values. A long-term study of N$_2$O production and emission at reactor-scale was performed at the Lynetten, the largest WWTP in DK. N$_2$O emission factor was 0.8% of the removed nitrogen at the full-scale BioDenipho line at Lynetten. Based on an LCA type evaluation, this corresponds to ~30% of the total carbon footprint of the WWTP. As a result of the intensive measuring campaign at Lynetten, 3 different control strategies to mitigate N$_2$O mitigation were developed and tested. The results were put in LCA context and the most-efficient control strategy reduced the overall CO$_2$ footprint of the plant with 18% compared to normal operation. Incubation-based determination and quantification of N$_2$O production pathways were performed on site with biomass from the BioDenipho reactors at Lynetten, using 15N labelled substrates and 18O-O$_2$. In general, heterotrophic denitrification was insignificant during oxic conditions, while incomplete denitrification became an important N$_2$O contributor under anoxia. Both pathways of ammonia oxidizing bacteria were equally important in oxic incubations with 3 mg/L O$_2$, while low oxygen concentrations favoured N$_2$O production by nitrifier denitrification over hydroxylamine oxidation. The quantitative effect of oxygen as well as other parameters on N$_2$O production pathways was linked to in situ measurements. A mathematical model structure that describes N$_2$O production during biological nitrogen removal was proposed and calibrated. The calibrated model predicts the NO and N$_2$O dynamics at varying ammonium, nitrite and dissolved oxygen levels in two independent systems: (a) an AOB-enriched biomass and (b) activated sludge (AS) mixed liquor biomass. Taken together, the observations and modelling efforts uncover different mitigation strategies to control N$_2$O emissions from biological nitrogen removal processes.