Hess opinions
An interdisciplinary research agenda to explore the unintended consequences of structural flood protection

Baldassarre, Giuliano Di; Kreibich, Heidi; Vorogushyn, Sergiy; Aerts, Jeroen; Arnbjerg-Nielsen, Karsten; Barendrecht, Marlies; Bates, Paul; Borga, Marco; Botzen, Wouter; Bubeck, Philip; De Marchi, Bruna; Llasat, Carmen; Mazzoleni, Maurizio; Molinari, Daniela; Mondino, Elena; Mård, Johanna; Petrucci, Olga; Scolobig, Anna; Viglione, Alberto; Ward, Philip J.

Published in:
Hydrology and Earth System Sciences

Link to article, DOI:
10.5194/hess-22-5629-2018

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection

Giuliano Di Baldassarre¹,², Heidi Kreibich³, Sergiy Vorogushyn³, Jeroen Aerts⁴, Karsten Arnbjerg-Nielsen⁵, Marlies Barendrecht⁶, Paul Bates⁷, Marco Borga⁸, Wouter Botzen⁹, Philip Bubeck¹⁰, Bruna De Marchi¹¹, Carmen Llasat¹², Maurizio Mazzoleni¹³, Daniela Molinari¹⁴, Elena Mondino¹,², Johanna Mård¹,², Olga Petrucci¹⁵, Anna Scolobig¹⁶, Alberto Viglione¹⁷, and Philip J. Ward¹

¹Department of Earth Sciences, Uppsala University, Uppsala, 75236, Sweden
²Centre of Natural Hazards and Disaster Science (CNDS), Sweden
³GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany
⁴Institute for Environmental Studies, Vrije Universiteit Amsterdam, Amsterdam, 1081, the Netherlands
⁵Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, 2800, Denmark
⁶Centre for Water Resource Systems, Vienna University of Technology, 1040 Vienna, Austria
⁷School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
⁸Department of Land, Environment, Agriculture and Forestry, Università degli Studi di Padova, Padova, 35122, Italy
⁹Utrecht University School of Economics (USE.), Utrecht University, Utrecht, the Netherlands
¹⁰Institute of Earth and Environmental Science, University of Potsdam, 14469 Potsdam, Germany
¹¹SVT, Centre for the Study of the Sciences and the Humanities, University of Bergen, Bergen, 5020, Norway
¹²Department of Applied Physics, University of Barcelona, Barcelona, 08007, Spain
¹³Department of Integrated Water Systems and Governance, IHE Delft, Delft, 2601, the Netherlands
¹⁴Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, 20133, Italy
¹⁵CNR-IRPI National Research Council – Research Institute for Geo-Hydrological Protection, Rende (CS), 87036, Italy
¹⁶Department of Environmental Systems Science, ETH Zürich, Zürich, 8092, Switzerland
¹⁷Centre for Water Resource Systems, Vienna University of Technology, 1040 Vienna, Austria

Correspondence: Giuliano Di Baldassarre (giuliano.dibaldassarre@geo.uu.se)

Received: 15 June 2018 – Discussion started: 16 July 2018
Revised: 10 October 2018 – Accepted: 23 October 2018 – Published: 30 October 2018

Abstract. One common approach to cope with floods is the implementation of structural flood protection measures, such as levees or flood-control reservoirs, which substantially reduce the probability of flooding at the time of implementation. Numerous scholars have problematized this approach. They have shown that increasing the levels of flood protection can attract more settlements and high-value assets in the areas protected by the new measures. Other studies have explored how structural measures can generate a sense of complacency, which can act to reduce preparedness. These paradoxical risk changes have been described as “levee effect”, “safe development paradox” or “safety dilemma”. In this commentary, we briefly review this phenomenon by critically analysing the intended benefits and unintended effects of structural flood protection, and then we propose an interdisciplinary research agenda to uncover these paradoxical dynamics of risk.

1 Premise

Economic losses caused by floods are increasing in many regions of the world, and flood risk will likely further increase because of climatic and socio-economic changes (Aerts et al., 2014; Alfieri et al., 2016). One common approach to cope with floods is the implementation of structural flood protection measures, such as levees or flood-control reservoirs. These types of infrastructure have been implemented
for many centuries in different areas around the world, as they can significantly reduce the probability of flooding. In the Netherlands, for example, the current levee system is able to withstand floods up to return periods ranging from 500 to 10 000 years (De Moel et al., 2011). In many parts of Europe, USA and Australia, flood protection measures are typically designed to protect people and assets from events with return periods between 100 and 1000 years (Bubeck et al. 2017). Conversely, most low-income countries currently have lower protection standards (Scussolini et al., 2016), and flooding events are therefore more frequent.

Recently, a global study of flood risk in a changing climate (Ward et al., 2017) has shown that the expected benefits of structural protection measures preventing frequent flooding often outweigh their building costs. This study made the (common) assumption that future flood exposure depends on socio-economic trends only, and not on the level of flood protection. However, since the studies of Gilbert White on human adjustments to floods (White, 1945), numerous scholars (White, 1994; Tobin, 1995; Burby, 2006; Kates et al., 2006; Burton and Cutter, 2008; Montz and Tobin, 2008; Scolobig and De Marchi, 2009; Ludy and Kondolf, 2012; Di Baldassarre et al., 2013a, b; 2015; Wenger, 2015) have shown that increasing levels of flood protection can also be associated with unexpected increases in flood exposure. Figure 1 depicts how the urbanization of flood-prone areas (and therefore flood exposure) can be influenced by structural flood protection. Figure 1a and b start from the same historical settlement (i.e. the orange buildings) and then show the urbanization of flood-prone areas. If such an urbanization was triggered by socio-economic trends only (e.g. population growth), the spatial distribution of the new settlements would be the same. However, the presence of structural flood protection tends to create incentives to build closer to the river and therefore increases flood exposure (compare Fig. 1a and b). Thus, socio-economic trends determine the amount of urbanization increase, while the presence of structural flood protection influences the spatial location of new settlements and as such may lead to increased flood exposure. This tendency is typically described as the “levee effect”, although some scholars have used different terms, such as “safe development paradox” or “safety dilemma” (Burby, 2006; Scolobig and De Marchi, 2009). This phenomenon can offset part of the intended benefits of structural flood protection and, paradoxically, flood risk can even increase in the medium–long term after the introduction or reinforcement of a structural flood protection (Kates et al., 2006; Montz and Tobin, 2008; Di Baldassarre et al., 2013b).
2017; Penning-Rowsell et al., 2006). However, in other contexts, structural flood protection is still commonly accompanied by the belief that protected areas are safe and flood problems are solved by means of engineering. In these cases, levees often fuel growing flood exposure, thereby increasing flood risk. This can imply that, based on cost–benefit analysis (Kind, 2014), it becomes economically beneficial to strengthen flood protection again (see next Sect. 2.2). Thus, the overall impacts of the levee effect on urban growth and flood risk depend on the specific context in which levees are planned and designed.

2.2 Vicious cycles, lock-in conditions and unexpected failures

The levee effect can lead to self-reinforcing feedbacks: increasing protection levels favours intense urbanization of floodplains that will then plausibly require even higher protection standards, as seen for example in the Netherlands (Di Baldassarre et al., 2015). Thus, it can generate lock-in conditions leading to exceptionally high levels of flood protection and extremely urbanized floodplains. This lock-in condition can be unsustainable (e.g. the maintenance of large infrastructure requires commitment of regular resources) or undesirable (e.g. large infrastructure can contribute to unfair distributions of risk; Masozera et al., 2007; Di Baldassarre et al., 2013b; Ferdous et al., 2018). Indeed, the costs and benefits of flood protection measures, as well as potential flood losses, are often not fairly shared across social groups (Kind et al., 2017), as seen in the aftermath of the catastrophic 2005 flooding of New Orleans (Kates et al., 2006).

Moreover, changes in technical flood protection inevitably cause spatial risk redistribution due to hydraulic interactions, e.g. risk shifts downstream due to increased levee heights upstream, but to date these effects remain poorly understood (Vorogushyn et al., 2018). Similarly, there are reports of “levee wars”, i.e. where local districts (or land owners) build higher levees to prevent local flooding and make other areas riskier (e.g. Allan James and Singer, 2008).

Lastly, the shift from frequent to rare-but-catastrophic flooding generated by structural flood protection causes serious problems for decision-making in flood risk management, due to high uncertainty associated with the estimation of low-probability flood events, such as the 1-in-100-year flood (Merz and Thieken, 2005). Additionally, rare-but-catastrophic events bear the potential of unexpected negative consequences, as they can take society by surprise and lead to a complex web of socio-economic interactions (Di Baldassarre et al., 2016), perhaps beyond the recovery potential (Merz et al., 2015).

2.3 Increasing vulnerabilities

Increasing the levels of flood protection can also generate a sense of complacency among the protected people, which can reduce preparedness, thereby increasing vulnerability (Tobin, 1995). This additional facet of the levee effect was explored by Scolobig and De Marchi (2009) and De Marchi and Scolobig (2011) with reference to four communities in northeastern Italy. Interviews, focus group discussions and surveys in these areas showed that residents of communities exposed to flood risk tend to underestimate, minimize or even neglect risk (see also the report in De Marchi et al., 2007). These studies showed that an important component of such an attitude is the false sense of security induced by the presence of (often impressive) structural works designed to limit risk and prevent damage. Apparently, the symbolic messages encrypted in stones (“no problem”) are more powerful than the verbal messages conveyed in information campaigns (“you are protected, but not totally safe”). More specifically, De Marchi et al. (2007) report the level of agreement of the informed respondents with four statements about protection works gauged on a Likert scale from 1 to 5 (a response of 1 signifies strong disagreement with the statement, while a response of 5 indicates strong agreement). The statements are listed here from highest to lowest mean values:

- The protection works give a feeling of safety to the people living in the village (4.49).
- The protection works eliminate the possibility of serious damage (3.92).
- The protection works reduce the risk of local flooding (3.25).
- The protection works prevent damage to the infrastructure (2.58).

Figure 1. Hypothetical urbanization patterns without (a) and with (b) levees. The presence of levees often triggers more intense urbanization (in grey) in flood-prone areas, which can offset (at least part of) the initial benefits of flood protection.
– The protection works promote/help the economic development of the community (3.48).
– The protection works are too expensive compared to the expected benefits (1.76).

The high mean value (4.49 out of 5) relating to the first statement suggests that structural protection plays a role in inducing a feeling of safety among residents in these risky areas. Moreover, the high agreement (3.92) with the item “elimination of serious damage” indicated that there was very little awareness of residual risk. Thus, in this area, people protected by levees were not well motivated to undertake private precautionary measures and as such are more vulnerable towards flooding, as also found in Ludy and Kondolf (2012) in the Sacramento valley.

Yet, the reality is much more complex, as multiple factors drive risk perception and the adoption of protection measures. This leads to dissimilar outcomes in different contexts. For example, Botzen et al. (2009) found that people in the Netherlands are mostly unaware of the protection level of the levees, even though such a protection level is extremely high. Moreover, recent studies in Germany (Bubeck et al., 2013) and France (Poussin et al., 2014) have found that households living in protected areas can in fact take even more risk mitigation measures, or they are more likely to have flood insurance (Bubeck et al., 2013), than the ones in unprotected areas. The latter effect is caused by the set-up of the German insurance system, which highlights the importance of contextual factors on the levee effect.

3 Lack of knowledge

While the levee effect has been described by many authors in different parts of the world, these studies are fragmented and have used completely different methods, hampering comparative analyses. Moreover, while some scholars have focused on the evaluation of increasing exposure, such as the intense urbanization of flood-prone areas, very few studies have focused on increased vulnerability, such as the false sense of security caused by the presence of levees. Thus, it is still unclear what the social, technical and hydrological conditions are that can (or cannot) trigger the emergence of the levee effect and to what extent. Owing to this major lack of fundamental knowledge, these effects are typically neglected in flood risk studies. This can introduce a systematic bias in the selection or prioritization of alternative strategies for flood risk reduction, for example by favouring structural measures over non-structural options like early warning systems (Pappenberger et al., 2015), precautionary measures (Kreibich et al., 2015) and relocation (Alfieri et al., 2016).

4 Research agenda

Hence, we call upon hydrologists, social scientists, economists, policy makers, and flood risk experts and managers to work together, and fill this gap in knowledge on the side effects of structural flood protection measures, which hinders the development of robust and sustainable strategies to reduce the negative impacts of floods. New empirical research is needed to reveal the social, technical and hydrological factors producing the levee effect and distinguish between intended and unintended effects of structural flood protection. Our suggestion for a research agenda comprises the following three components: (1) comparative analysis of a large datasets of different case studies, (2) long-term monitoring of exposure and vulnerability dynamics, and (3) utilisation and development of new methods to explore the long-term dynamics of flood risk changes and unravel the primary mechanism generating levee effects.

4.1 Comparative analysis

Empirical research commonly relies on specific case studies, which are unique and have their own characteristics and processes. This can make it challenging to draw general, transferable conclusions. An approach to tackle this challenge is a comparative analysis (Kreibich et al., 2017) with the aim of finding general patterns in a large set of diverse case studies in different contexts. For instance, to support universal parameter estimation for hydrological models the Model Parameter Estimation Experiment (MOPEX) assembled and analysed a large number of datasets for a wide range of river basins throughout the world (Wagener et al., 2006). To better understand the unintended consequences of structural flood protection, there is also a need for comparative analysis of the evolution of urban planning and risk assessment policies, legislation and practices — including issues such as the decision-making processes to define building constraints in risky areas, institutional communication strategies, or the relationship between scientific and policy innovation in risk assessment. The socio-hydrological framework (Sivapalan et al., 2012), and its specific application to disaster risk reduction (Di Baldassarre et al., 2018), can provide guidance about the set of key variables to perform such a comparative analysis of the levee effect.

Hence, we suggest using case studies to identify and analyse potential or actual occurrences of the levee effect across different hydrological, technical, social and cultural settings and identify common patterns and factors that produce (or not) levee effects. Some examples of potential case studies across different contexts are provided in Table 1.
Table 1. Monitoring levee effects over time – data needs for an empirical analysis of the levee effect and their availability in different hotspots across decades.

| Data needs |
|------------------|------------------|------------------|------------------|
| (Ideal case study should be available for the same time period over several decades) Time series of floods Flood information, e.g. annual maximum flows or peaks over a threshold. | Time series of floods Flood information, e.g. annual maximum flows or peaks over a threshold. | Time series of floods Flood information, e.g. annual maximum flows or peaks over a threshold. | Time series of floods Flood information, e.g. annual maximum flows or peaks over a threshold. |
| Change in flood protection standards Data, indicators and proxies, e.g. building times and heights of levees (with some reasonable resolution, e.g. 10–30 years). | Change in flood protection standards Data, indicators and proxies, e.g. building times and heights of levees (with some reasonable resolution, e.g. 10–30 years). | Change in flood protection standards Data, indicators and proxies, e.g. building times and heights of levees (with some reasonable resolution, e.g. 10–30 years). | Change in flood protection standards Data, indicators and proxies, e.g. building times and heights of levees (with some reasonable resolution, e.g. 10–30 years). |
| Change in flood exposure Data, indicators and proxies, e.g. spatio-temporal changes in population density, asset values, land use in protected flood plains (with some reasonable resolution e.g. 10–30 years). | Change in flood exposure Data, indicators and proxies, e.g. spatio-temporal changes in population density, asset values, land use in protected flood plains (with some reasonable resolution e.g. 10–30 years). | Change in flood exposure Data, indicators and proxies, e.g. spatio-temporal changes in population density, asset values, land use in protected flood plains (with some reasonable resolution e.g. 10–30 years). | Change in flood exposure Data, indicators and proxies, e.g. spatio-temporal changes in population density, asset values, land use in protected flood plains (with some reasonable resolution e.g. 10–30 years). |
| Change in flood vulnerability Data, indicators or proxies, e.g. risk awareness and preparedness studies (with a focus on levee effects), emergency management (e.g. early warning times), insurance cover, evolution of regulatory frameworks, legislation, policies, decision-making processes, and communication strategies for hazard and risk assessment. | Change in flood vulnerability Data, indicators or proxies, e.g. risk awareness and preparedness studies (with a focus on levee effects), emergency management (e.g. early warning times), insurance cover, evolution of regulatory frameworks, legislation, policies, decision-making processes, and communication strategies for hazard and risk assessment. | Change in flood vulnerability Data, indicators or proxies, e.g. risk awareness and preparedness studies (with a focus on levee effects), emergency management (e.g. early warning times), insurance cover, evolution of regulatory frameworks, legislation, policies, decision-making processes, and communication strategies for hazard and risk assessment. | Change in flood vulnerability Data, indicators or proxies, e.g. risk awareness and preparedness studies (with a focus on levee effects), emergency management (e.g. early warning times), insurance cover, evolution of regulatory frameworks, legislation, policies, decision-making processes, and communication strategies for hazard and risk assessment. |

Actual data availability

Cologne, Germany	Annual maximum river flows. Available.	Development of the population since 1993 until 2020 for 80+ districts of Cologne.	Survey data from 2012 on risk perception and perceptions towards flood risk management. Can be compared to other areas that have a much higher flood risk compared with Cologne.
Northeastern Italy	Annual maximum river flows. Qualitative information available in the technical municipal and provincial offices.	Data available on (i) land-use change (municipal urban plans) and construction of protection works, (ii) changes in social vulnerability and population density at municipal level years (Official National Census data, conducted every 10 years since 1900).	Risk awareness and preparedness surveys conducted in 2005 (N = 400, Trento area; N = 176 Bolzano/Bozen area; N = 100 Malborghetto Valbruna). Available. Flood risk maps of PAI (Piano di Assetto Idrogeologico): these maps, realized in 2000, classify territory according to four different flood risk levels.
Denmark	Levees are for sea surges. Detailed time series, 10 series longer than 100 years. Large flood in 1872 led to construction of large dike to protect valuable farmland. No larger change in standards since then.	National compensation scheme in place since 1980s.	Land-use change and change of human preference imply that levees are protecting the wrong locations.
Vienna, Austria	Time series of floods. Reports about the various projects that were undertaken throughout the years to update the flood protection system of Vienna. Available.	No data available.	
Calabria region, Italy	Time series of flood levels. Discharge data are not available: we deal with typically Mediterranean ungauged torrential streams. The series of maximum rainfall events can be used as a proxy of river discharge. Historical series of elements damaged by floods throughout the time series	Qualitative information that can be obtained from the comparative analysis of the different types of structural works realized during the period 1820–present.	Temporal series of realization of protection works (levees, check dams and other types) and major land transformation since 1850. Number of inhabitants obtained from official national census: every 10 years since 1880. Map of urbanized sectors in two or three time periods, depending on the availability of air photos.
Lodi, Italy	Annual maximum river flows. Annual maximum precipitation.	Executive projects of the levee system built after the 2002 flood with information about height, material, design safety level, costs and path.	Urbanization patterns (i.e. buildings construction time) since 1920. Number of inhabitants from official national census every year since 1900. Orthoimages since 1950. Risk awareness and preparedness survey of people affected in 2002 and still living in the area (10 households ongoing). Emergency plans and flood risk maps available.
We can draw from new approaches that have been developed for the study of socio-nature interactions in various interdisciplinary fields, such as ecological economics, behavioural sciences, social ecology and socio-hydrology (Folke et al., 2005; Sivapalan et al., 2012; Montanari et al., 2013; Di Baldassarre et al., 2013a; Aerts et al., 2018). In particular, new opportunities to simulate behavioural responses to changing flood risk and flood risk management policies are offered nowadays by system dynamics (Di Baldassarre et al., 2013a) and agent-based modelling (Werner and McNamara, 2007; Aerts et al., 2018). An example of a paper that integrates behavioural theories of decision-making under risk in hydrological modelling is the research by Haer et al. (2017). They apply the well-known expected utility theory (von Neumann and Morgenstern, 1953) of individual decision-making under risk, to simulate household flood preparedness behaviour under increasing flood risk. The same study compares this behaviour with boundedly rational behaviour, using the prospect theory developed by Kahneman and Tversky (2013). The latter captures situations in which individuals make flood adaptation decisions, while either underweighting of high-probability events or overweighting of low-probability flood events in their decision to invest in flood damage mitigation measures. Another study is by Haer et al. (2016), who apply an agent based model that includes decision rules based on protection motivation theory to show the effect of risk communication on flood adaptation decisions.

These new models can guide empirical data collection to test alternative hypotheses about the primary mechanisms that can (or cannot) generate the levee effect in different contexts. This knowledge can be complemented by participatory approaches for co-generating knowledge between experts and stakeholders (Nature, 2018) in order to identify technical and policy options to address the unintended consequences of structural flood protection. Moreover, the protection motivation theory can also help explain the mitigation behaviour of individuals, which influences the vulnerability of those living behind the levees (Bubeck et al., 2012). It is thus, we suggest complementary empirical data collection in the case studies via longitudinal studies, where individuals, communities and decision-makers are repeatedly interviewed to assess how changes in flood protection levels influence vulnerability and urban growth over time. Moreover, ideal case studies should also allow the analysis of counterfactual cases, i.e. how would risk have developed in an area had levees not been built. Such a study can be done by comparing urban growth in two adjacent areas, one protected by a levee and one which is not.

4.3 Exploitation of new models, concepts and data

We can draw from new approaches that have been developed for the study of socio-nature interactions in various interdisciplinary fields, such as ecological economics, behavioural sciences, social ecology and socio-hydrology (Folke et al., 2005; Sivapalan et al., 2012; Montanari et al., 2013; Di Baldassarre et al., 2013a; Aerts et al., 2018). In particular, new opportunities to simulate behavioural responses to changing flood risk and flood risk management policies are offered nowadays by system dynamics (Di Baldassarre et al., 2013a) and agent-based modelling (Werner and McNamara, 2007; Aerts et al., 2018). An example of a paper that integrates behavioural theories of decision-making under risk in hydrological modelling is the research by Haer et al. (2017). They apply the well-known expected utility theory (von Neumann and Morgenstern, 1953) of individual decision-making under risk, to simulate household flood preparedness behaviour under increasing flood risk. The same study compares this behaviour with boundedly rational behaviour, using the prospect theory developed by Kahneman and Tversky (2013). The latter captures situations in which individuals make flood adaptation decisions, while either underweighting of high-probability events or overweighting of low-probability flood events in their decision to invest in flood damage mitigation measures. Another study is by Haer et al. (2016), who apply an agent based model that includes decision rules based on protection motivation theory to show the effect of risk communication on flood adaptation decisions.

These new models can guide empirical data collection to test alternative hypotheses about the primary mechanisms that can (or cannot) generate the levee effect in different contexts. This knowledge can be complemented by participatory approaches for co-generating knowledge between experts and stakeholders (Nature, 2018) in order to identify technical and policy options to address the unintended consequences of structural flood protection. Moreover, the protection motivation theory can also help explain the mitigation behaviour of individuals, which influences the vulnerability of those living behind the levees (Bubeck et al., 2012). It is
particularly important to focus on what motivates protection and to provide a link between protection and communication theory or theories, by clearly identifying which communication tools and contents trigger attitudinal and behavioural change, e.g. for residual risk communication. Lastly, the increasing availability of remotely sensed data and advanced information extraction methods, such as night-light data extraction (Ceola et al., 2014; Mård et al., 2018), allows analyses of exposure dynamics over longer time spans.

5 Summary

We posit that exploiting these different methods, concepts and data within the suggested research agenda would significantly improve our understanding of the unintended effects of flood protection. This advanced knowledge will improve our ability to assess and explain changes in flood risk. Also, it will provide more empirical evidence supporting the selection of strategies and measures for flood risk reduction. More specifically, Table 2 shows the main research questions that remain unanswered, what elements of the proposed research agenda can help address them, and how addressing these questions can contribute to better flood risk policies.

Data availability. No data sets were used in this article.

Author contributions. This commentary originates from wide-ranging discussions during three workshops (Leeds, UK, 2017; New Orleans, USA, 2018; Vienna, Austria, 2018) of the working group on Changes in Flood Risk within the Panta Rhei research initiative of the International Association of Hydrological Sciences (IAHS). GDB led the writing process and conceived Fig. 1. HK and SV developed the research agenda and the table of data needs and availability. All the co-authors substantially contributed to the commentary with original ideas, potential case studies or revising/editing of the text.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. This work was developed within the activities of the working group on Changes in Flood Risk of the Panta Rhei research initiative of the International Association of Hydrological Sciences (IAHS). Giuliano Di Baldassarre was supported by the European Research Council (ERC) within the project “HydroSocialExtremes: Uncovering the Mutual Shaping of Hydrological Extremes and Society”. ERC Consolidator Grant no. 761678. Karsten Arnbjerg-Nielsen was supported by Innovation Fund Denmark through the Water Smart Cities Project, grant 5157-0009B. Philip Bubeck is supported by a Royal Society Wolfson Research Merit Award and a Leverhulme Research Fellowship. Philip J. Ward and Wouter Botzen received funding from the Netherlands Organisation for Scientific Research (NWO) in the form of VIDI grants 016.161.324 and 45214005.

Edited by: Hilary McMillan
Reviewed by: two anonymous referees

References

Colten, C. C. and De Marchi, B.: Hurricane Katrina: The Highly Anticipated Surprise, in: Città salute e sicurezza, Strumenti di

