COMBINED SHORT- AND LONG-TERM HEAT STORAGE WITH SODIUM ACETATE TRIHYDRATE FOR SOLAR HEAT SUPPLY IN BUILDINGS

Gerald Englmair1, Christoph Moser2, Simon Furbo1, Hermann Schranzhofer2, Jianhua Fan1
1 Department of Civil Engineering, Technical University of Denmark; gereng@byg.dtu.dk
2 Institute of Thermal Engineering, Graz University of Technology

Background:
Due to the mismatch of solar energy resources and domestic heat demand, long-term storage of heat is essential for an innovative system with a high solar fraction in the range of 70%-100%. Therefore a concept based on stable supercooling of a sodium acetate trihydrate (SAT) has been investigated.

Material properties:
• Melting temperature: 58 °C
• Latent heat of fusion: 264 kJ kg⁻¹
• Market prices (food grade): typically below 0.5 € kg⁻¹
• Thickening agents and liquid polymers are used to stabilize SAT
• SAT can supercool to ambient temperature while heat of fusion is preserved

Heat storage units:
Supercooling of SAT composites can be achieved in flat container of 150 L with an internal height of 5 cm. Later, a cylindrical container (Ø 0.4 m) of similar volume was built with an internal spiral heat exchanger. It was situated in a water tank (Ø 0.46 m) so that heat transfer via its outer surface was possible. The total heat exchange surface was 3 m². Units of both design were constructed by Nilan A/S.

Prototype units were tested for their short- and long-term heat storage potential after heating to 90 °C. Controlled activation of SAT crystallization was achieved by either seed crystal injection or local cooling (CO₂ evaporation, Peltier elements).

System simulation:
• Component models were developed and experimentally validated
• Daily hot water demand: 126 L at 45 °C (3 persons)
• High Solar Fractions (SF) for a Passive house in Danish climate

Acknowledgement:
This research is funded by the PhD program of the Sino Danish Center for Education and Research (SDC). The work was also supported by the European Commission (Grant Agreement N_295568). We would like to thank our industrial partner NILAN A/S for the good collaboration.

Conclusions:
• Proof of combined short- and long term heat storage
• Improved cylindrical units are potentially economic
• Application of segmented heat stores in novel energy systems:
 ➔ Power to heat (PV, wind power)
 ➔ Solar combi-system 2.0