

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Mar 25, 2019

Proving in the Isabelle Proof Assistant that the Set of Real Numbers is not Countable

Villadsen, Jørgen

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Villadsen, J. (2018). Proving in the Isabelle Proof Assistant that the Set of Real Numbers is not Countable.
Paper presented at International Workshop on Theorem proving components for Educational software , Oxford ,
United Kingdom.

http://orbit.dtu.dk/en/publications/proving-in-the-isabelle-proof-assistant-that-the-set-of-real-numbers-is-not-countable(1eed29f5-d535-4e66-a493-353a1bc2bc3a).html

Proving in the Isabelle Proof Assistant that the

Set of Real Numbers is not Countable

Jørgen Villadsen
DTU Compute, AlgoLoG, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

jovi@dtu.dk

Abstract

We present a new succinct proof of the uncountability of the real numbers – optimized

for clarity – based on the proof by Benjamin Porter in the Isabelle Analysis theory.

1 Introduction

In 1874 Georg Cantor proved that set of real numbers is not countable – or, no

surjective function from the natural numbers to the real numbers exists.

theorem ∄f :: nat ⇒ real. surj f

We use the Isabelle proof assistant, more precisely Isabelle/HOL, and omit the so-

called cartouches ‹…› around formulas as is common in recent papers about

formalizations in Isabelle. Since the notion of the real numbers in Isabelle is not

grounded in decimal expansions, Cantor’s elegant diagonal argument from 1891 is

not suitable. With some effort we have ordered by year the immediately known

formalizations of the theorem.

 ProofPower Rob Arthan 2003

 Metamath Norman Megill 2004

 Mizar Grzegorz Bancerek 2004

 HOL Light John Harrison 2005

 Isabelle Benjamin Porter 2005

 Coq Nickolay Shmyrev 2006

Freek Wiedijk’s comprehensive list “Formalizing 100 Theorems” has been a

valuable starting point:

http://www.cs.ru.nl/~freek/100/

We present a new succinct proof – optimized for clarity – based on the proof by

Benjamin Porter in the Isabelle Analysis theory and inspired by the traditional proof

(Hansen 1999, p. 45). The full proof is available in the appendix and also online here

together with other results about countable and uncountable sets:

https://github.com/logic-tools/continuum

We note that the theorem can also be phrased as follows using quantifiers only.

proposition ∄f. ∀y :: real. ∃x :: nat. y = f x

We have not yet fully investigated if our approach can be generalized to other proofs

except that we have recently considered a related proof, namely that the set of

rational numbers is in fact countable, based on the rather scattered formalization in

the Isabelle Library which incidentally differs in a number of ways from the

traditional proof (Hansen 1999).

2 A Possible New Feature in Isabelle

As a possible new feature in Isabelle we use “...” to signify a proof found by

Isabelle’s Sledgehammer tool (Blanchette 2017), possibly also using some more or

less obvious proof methods.

We suggest to implement it like a kind of extended “sorry” proof methods that is a

“fake proof pretending to solve the pending claim without further ado” (cf. the

Isabelle/Isar Reference Manual in the Isabelle distribution).

But when the Sledgehammer tool finds a proof then the “...” should somehow change

color and/or shape to indicate this.

In this way Isabelle proofs can still be replayed.

Perhaps the “...” notation is not ideal since it is used for other things in Isabelle.

3 The Proof Skeleton

We provide a proof skeleton and continue the proof in the following section.

The proof is by contradiction.

assume ∃f :: nat ⇒ real. surj f

show False

We first obtain a name for the surjective function.

from ∃f. surj f obtain f :: nat ⇒ real where surj f ..

then have assumption: ∃n. f n = z for z ...

Here “..” is a standard proof; it abbreviates “by standard” and performs elementary

proof steps depending on the application environment. And the “...” proof is a

resolution proof “by (metis surj_def)” which we for further transparency separate

into two proof steps “unfolding surj_def by metis” as shown in the appendix.

In our proof we now obtain a certain natural-numbers-indexed set D of real numbers

with a kind of diagonalization property.

obtain D :: nat ⇒ real set

 where

 (⋂n. D n) ≠ {}

 f n ∉ D n

 for n

We defer the proof of the existence of the indexed set D to the next section. From the

indexed set D we easily obtain the contradiction.

then obtain e where ∄n. f n = e ...

moreover from assumption have ∃n. f n = e .

ultimately show ?thesis ..

Here “…” is the resolution proof “by (metis INT_E UNIV_I ex_in_conv)” as shown

in the appendix.

4 The Indexed Set D

We need to fill the gap in the proof skeleton regarding the indexed set D.

We start by defining two functions of three arguments.

obtain L R :: real ⇒ real ⇒ real ⇒ real

 where *:

 L a b c < R a b c

 {L a b c .. R a b c} ⊆ {a .. b}

 c ∉ {L a b c .. R a b c}

 if a < b for a b c

We here include the complete proof of the existence of the two functions, except for

the “...” proofs shown in the appendix.

proof -

 have ∃x y. a ≤ x ∧ x < y ∧ y ≤ b ∧ ¬ (x ≤ c ∧ c ≤ y)

 if a < b for a b c :: real ...

 then have ∃x y. x < y ∧ {x .. y} ⊆ {a .. b} ∧ c ∉ {x .. y}

 if a < b for a b c :: real ...

 then show ?thesis ...

qed

We recursively define an indexed set of intervals given by pairs – the endpoints of

the intervals.

define P :: nat ⇒ real × real

 where

 P ≡ rec_nat

 (L 0 1 (f 0),

 R 0 1 (f 0))

 (λn (x, y). (L x y (f (Suc n)),

 R x y (f (Suc n))))

We prove that the endpoints are ordered as expected; again the “...” proofs are shown

in the appendix.

with *(1) have 0: fst (P n) < snd (P n) for n ...

Finally we define the indexed set of intervals and prove the required properties.

define I :: nat ⇒ real set

 where

 I ≡ λn. {fst (P n) .. snd (P n)}

with 0 have I n ≠ {} for n ...

moreover from 0 *(2) have decseq I ...

ultimately have finite S ⟶ (⋂n∈S. I n) ≠ {} for S ...

moreover have closed (I n) for n ...

moreover have compact (I n) for n ...

ultimately have (⋂n. I n) ≠ {} ...

moreover from 0 *(3) have f n ∉ I n for n ...

ultimately show ?thesis ..

5 Conclusion

We have with good results explained the proof to a group of mathematicians with

little or no knowledge of formal methods. In particular the “…” notation is useful

and might be relevant to implement, perhaps with the Proof Strategy Language

available in the Isabelle Archive of Formal Proofs.

References

Vagn Lundsgaard Hansen (1999): Fundamental Concepts in Modern Analysis. World Scientific.

Jasmin Christian Blanchette (2017): User’s Guide to Sledgehammer. Isabelle Distribution.

Appendix: Formalization in Isabelle

theory Scratch imports Complex_Main

begin

theorem ‹∄f :: nat ⇒ real. surj f›

proof

 assume ‹∃f :: nat ⇒ real. surj f›

 show False

 proof -

 from ‹∃f. surj f› obtain f :: ‹nat ⇒ real› where ‹surj f› ..

 then have assumption: ‹∃n. f n = z› for z

 unfolding surj_def by metis

 obtain D :: ‹nat ⇒ real set› where ‹(⋂n. D n) ≠ {}› ‹f n ∉ D n› for n

 proof -

 obtain L R :: ‹real ⇒ real ⇒ real ⇒ real›

 where

 *: ‹L a b c < R a b c› ‹{L a b c .. R a b c} ⊆ {a .. b}› ‹c ∉ {L a b c .. R a b c}›

 if ‹a < b› for a b c

 proof -

 have ‹∃x y. a ≤ x ∧ x < y ∧ y ≤ b ∧ ¬ (x ≤ c ∧ c ≤ y)› if ‹a < b› for a b c :: real

 using that dense less_le_trans not_le not_less_iff_gr_or_eq by (metis (full_types))

 then have ‹∃x y. x < y ∧ {x .. y} ⊆ {a .. b} ∧ c ∉ {x .. y}› if ‹a < b› for a b c :: real

 using that by fastforce

 then show ?thesis

 using that by metis

 qed

 define P :: ‹nat ⇒ real × real›

 where

 ‹P ≡ rec_nat

 (L 0 1 (f 0),

 R 0 1 (f 0))

 (λn (x, y). (L x y (f (Suc n)),

 R x y (f (Suc n))))›

 with *(1) have 0: ‹fst (P n) < snd (P n)› for n

 unfolding split_def by (induct n) simp_all

 define I :: ‹nat ⇒ real set›

 where

 ‹I ≡ λn. {fst (P n) .. snd (P n)}›

 with 0 have ‹I n ≠ {}› for n

 using less_imp_le by fastforce

 moreover from 0 *(2) have ‹decseq I›

 unfolding I_def P_def split_def decseq_Suc_iff by simp

 ultimately have ‹finite S ⟶ (⋂n∈S. I n) ≠ {}› for S

 using decseqD subset_empty INF_greatest Max_ge by metis

 moreover have ‹closed (I n)› for n

 unfolding I_def by simp

 moreover have ‹compact (I n)› for n

 unfolding I_def using compact_Icc compact_Int_closed decseqD inf.absorb_iff2 le0 by simp

 ultimately have ‹(⋂n. I n) ≠ {}›

 using INT_insert compact_imp_fip_image empty_subsetI finite_insert inf.absorb_iff2 by metis

 moreover from 0 *(3) have ‹f n ∉ I n› for n

 unfolding I_def P_def split_def by (induct n) simp_all

 ultimately show ?thesis ..

 qed

 then obtain e where ‹∄n. f n = e›

 using INT_E UNIV_I ex_in_conv by metis

 moreover from assumption have ‹∃n. f n = e› .

 ultimately show ?thesis ..

 qed

qed

end ― ‹Jørgen Villadsen, DTU Denmark - Based on work by Benjamin Porter, NICTA Australia›

