
 
 
General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright 
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 

 You may not further distribute the material or use it for any profit-making activity or commercial gain 

 You may freely distribute the URL identifying the publication in the public portal 
 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 
  
 

   

 

 

Downloaded from orbit.dtu.dk on: Mar 25, 2019

Proving in the Isabelle Proof Assistant that the Set of Real Numbers is not Countable

Villadsen, Jørgen

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Villadsen, J. (2018). Proving in the Isabelle Proof Assistant that the Set of Real Numbers is not Countable.
Paper presented at International Workshop on Theorem proving components for Educational software , Oxford ,
United Kingdom.

http://orbit.dtu.dk/en/publications/proving-in-the-isabelle-proof-assistant-that-the-set-of-real-numbers-is-not-countable(1eed29f5-d535-4e66-a493-353a1bc2bc3a).html


Proving in the Isabelle Proof Assistant that the 

Set of Real Numbers is not Countable 

Jørgen Villadsen 
DTU Compute, AlgoLoG, Technical University of Denmark,  2800 Kongens Lyngby, Denmark 

jovi@dtu.dk 

Abstract 

We present a new succinct proof of the uncountability of the real numbers – optimized 

for clarity – based on the proof by Benjamin Porter in the Isabelle Analysis theory. 

1 Introduction 

In 1874 Georg Cantor proved that set of real numbers is not countable – or, no 

surjective function from the natural numbers to the real numbers exists. 
 

theorem ∄f :: nat ⇒ real. surj f 

 

We use the Isabelle proof assistant, more precisely Isabelle/HOL, and omit the so-

called cartouches ‹…› around formulas as is common in recent papers about 

formalizations in Isabelle. Since the notion of the real numbers in Isabelle is not 

grounded in decimal expansions, Cantor’s elegant diagonal argument from 1891 is 

not suitable. With some effort we have ordered by year the immediately known 

formalizations of the theorem. 

 

 ProofPower Rob Arthan  2003  

 Metamath  Norman Megill  2004 

 Mizar  Grzegorz Bancerek 2004 

 HOL Light  John Harrison  2005 

 Isabelle  Benjamin Porter  2005 

 Coq   Nickolay Shmyrev 2006 

 



Freek Wiedijk’s comprehensive list “Formalizing 100 Theorems” has been a 

valuable starting point: 

 
http://www.cs.ru.nl/~freek/100/ 

 

We present a new succinct proof – optimized for clarity – based on the proof by 

Benjamin Porter in the Isabelle Analysis theory and inspired by the traditional proof 

(Hansen 1999, p. 45). The full proof is available in the appendix and also online here 

together with other results about countable and uncountable sets: 

 
https://github.com/logic-tools/continuum 

 

We note that the theorem can also be phrased as follows using quantifiers only. 
 

proposition ∄f. ∀y :: real. ∃x :: nat. y = f x 

 

We have not yet fully investigated if our approach can be generalized to other proofs 

except that we have recently considered a related proof, namely that the set of 

rational numbers is in fact countable, based on the rather scattered formalization in 

the Isabelle Library which incidentally differs in a number of ways from the 

traditional proof (Hansen 1999). 

2 A Possible New Feature in Isabelle 

As a possible new feature in Isabelle we use “...” to signify a proof found by 

Isabelle’s Sledgehammer tool (Blanchette 2017), possibly also using some more or 

less obvious proof methods. 

 

We suggest to implement it like a kind of extended “sorry” proof methods that is a 

“fake proof pretending to solve the pending claim without further ado” (cf. the 

Isabelle/Isar Reference Manual in the Isabelle distribution). 

 

But when the Sledgehammer tool finds a proof then the “...” should somehow change 

color and/or shape to indicate this. 

 

In this way Isabelle proofs can still be replayed. 

 

Perhaps the “...” notation is not ideal since it is used for other things in Isabelle. 



3 The Proof Skeleton 

We provide a proof skeleton and continue the proof in the following section.  

 

The proof is by contradiction. 
 

assume ∃f :: nat ⇒ real. surj f 
 

show False 

 

We first obtain a name for the surjective function. 
 

from ∃f. surj f obtain f :: nat ⇒ real where surj f .. 
 

then have assumption: ∃n. f n = z for z ... 

 

Here “..” is a standard proof; it abbreviates “by standard” and performs elementary 

proof steps depending on the application environment. And the “...” proof is a 

resolution proof “by (metis surj_def)” which we for further transparency separate 

into two proof steps “unfolding surj_def by metis” as shown in the appendix. 

 

In our proof we now obtain a certain natural-numbers-indexed set D of real numbers 

with a kind of diagonalization property.  
 

obtain D :: nat ⇒ real set 

  where 

    (⋂n. D n) ≠ {} 

    f n ∉ D n 

  for n 

 

We defer the proof of the existence of the indexed set D to the next section. From the 

indexed set D we easily obtain the contradiction. 
 

then obtain e where ∄n. f n = e ... 
 

moreover from assumption have ∃n. f n = e . 
 

ultimately show ?thesis .. 

 

Here “…” is the resolution proof “by (metis INT_E UNIV_I ex_in_conv)” as shown 

in the appendix. 



4 The Indexed Set D 

We need to fill the gap in the proof skeleton regarding the indexed set D. 

 

We start by defining two functions of three arguments. 
 

obtain L R :: real ⇒ real ⇒ real ⇒ real 

  where *: 

    L a b c < R a b c 

    {L a b c .. R a b c} ⊆ {a .. b} 

    c ∉ {L a b c .. R a b c} 

  if a < b for a b c 

 

We here include the complete proof of the existence of the two functions, except for 

the “...” proofs shown in the appendix. 
 

proof - 
 

  have ∃x y. a ≤ x ∧ x < y ∧ y ≤ b ∧ ¬ (x ≤ c ∧ c ≤ y) 

    if a < b for a b c :: real ... 
 

  then have ∃x y. x < y ∧ {x .. y} ⊆ {a .. b} ∧ c ∉ {x .. y} 

    if a < b for a b c :: real ... 
 

  then show ?thesis ... 
 

qed 

 

We recursively define an indexed set of intervals given by pairs – the endpoints of 

the intervals. 
 

define P :: nat ⇒ real × real 

  where 

    P ≡ rec_nat 

        (L 0 1 (f 0), 

         R 0 1 (f 0)) 

        (λn (x, y). (L x y (f (Suc n)), 

                     R x y (f (Suc n)))) 

 

We prove that the endpoints are ordered as expected; again the “...” proofs are shown 

in the appendix. 

 

with *(1) have 0: fst (P n) < snd (P n) for n ... 

 



Finally we define the indexed set of intervals and prove the required properties. 
 

define I :: nat ⇒ real set 

  where 

    I ≡ λn. {fst (P n) .. snd (P n)} 
 

with 0 have I n ≠ {} for n ... 
 

moreover from 0 *(2) have decseq I ... 
 

ultimately have finite S ⟶ (⋂n∈S. I n) ≠ {} for S ... 
 

moreover have closed (I n) for n ... 
 

moreover have compact (I n) for n ... 
 

ultimately have (⋂n. I n) ≠ {} ... 
 

moreover from 0 *(3) have f n ∉ I n for n ... 
 

ultimately show ?thesis .. 

5 Conclusion 

We have with good results explained the proof to a group of mathematicians with 

little or no knowledge of formal methods. In particular the “…” notation is useful 

and might be relevant to implement, perhaps with the Proof Strategy Language 

available in the Isabelle Archive of Formal Proofs. 
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Appendix: Formalization in Isabelle 
 
theory Scratch imports Complex_Main 

begin 
 

theorem ‹∄f :: nat ⇒ real. surj f› 

proof 

  assume ‹∃f :: nat ⇒ real. surj f› 

  show False 

  proof - 

    from ‹∃f. surj f› obtain f :: ‹nat ⇒ real› where ‹surj f› .. 
 

    then have assumption: ‹∃n. f n = z› for z 

      unfolding surj_def by metis 

  



    obtain D :: ‹nat ⇒ real set› where ‹(⋂n. D n) ≠ {}› ‹f n ∉ D n› for n 

    proof - 

      obtain L R :: ‹real ⇒ real ⇒ real ⇒ real› 

        where 

          *: ‹L a b c < R a b c› ‹{L a b c .. R a b c} ⊆ {a .. b}› ‹c ∉ {L a b c .. R a b c}› 

        if ‹a < b› for a b c 

      proof - 

        have ‹∃x y. a ≤ x ∧ x < y ∧ y ≤ b ∧ ¬ (x ≤ c ∧ c ≤ y)› if ‹a < b› for a b c :: real 

          using that dense less_le_trans not_le not_less_iff_gr_or_eq by (metis (full_types)) 
 

        then have ‹∃x y. x < y ∧ {x .. y} ⊆ {a .. b} ∧ c ∉ {x .. y}› if ‹a < b› for a b c :: real 

          using that by fastforce 
 

        then show ?thesis 

          using that by metis 

      qed 
 

      define P :: ‹nat ⇒ real × real› 

        where 

          ‹P ≡ rec_nat 

               (L 0 1 (f 0), 

                R 0 1 (f 0)) 

               (λn (x, y). (L x y (f (Suc n)), 

                            R x y (f (Suc n))))› 
 

      with *(1) have 0: ‹fst (P n) < snd (P n)› for n 

        unfolding split_def by (induct n) simp_all 
 

      define I :: ‹nat ⇒ real set› 

        where 

          ‹I ≡ λn. {fst (P n) .. snd (P n)}› 
 

      with 0 have ‹I n ≠ {}› for n 

        using less_imp_le by fastforce 
 

      moreover from 0 *(2) have ‹decseq I› 

        unfolding I_def P_def split_def decseq_Suc_iff by simp 
 

      ultimately have ‹finite S ⟶ (⋂n∈S. I n) ≠ {}› for S 

        using decseqD subset_empty INF_greatest Max_ge by metis 
 

      moreover have ‹closed (I n)› for n 

        unfolding I_def by simp 
 

      moreover have ‹compact (I n)› for n 

        unfolding I_def using compact_Icc compact_Int_closed decseqD inf.absorb_iff2 le0 by simp 
 

      ultimately have ‹(⋂n. I n) ≠ {}› 

        using INT_insert compact_imp_fip_image empty_subsetI finite_insert inf.absorb_iff2 by metis 
 

      moreover from 0 *(3) have ‹f n ∉ I n› for n 

        unfolding I_def P_def split_def by (induct n) simp_all 
 

      ultimately show ?thesis .. 

    qed 
 

    then obtain e where ‹∄n. f n = e› 

      using INT_E UNIV_I ex_in_conv by metis 
 

    moreover from assumption have ‹∃n. f n = e› . 
 

    ultimately show ?thesis .. 

  qed 

qed 
 

end ― ‹Jørgen Villadsen, DTU Denmark - Based on work by Benjamin Porter, NICTA Australia› 


