Benchmarking state-of-the-art optical simulation methods for analyzing large nanophotonic structures

Gregersen, Niels; de Lasson, Jakob Rosenkrantz; Frandsen, Lars Hagedorn; Kim, Oleksiy S.; Breinbjerg, Olav; Wang, Fengwen; Sigmund, Ole; Ivinskaya, Aliaksandra; Lavrinenko, Andrei; Gutsche, Philipp; Burger, Sven; Häyrynen, Teppo; Mørk, Jesper

Published in:

Publication date:
2018

Document Version
Peer reviewed version

Citation (APA):
Benchmarking state-of-the-art optical simulation methods for analyzing large nanophotonic structures

Niels Gregersen1*, Jakob Rosenkrantz de Lasson1, Lars Hagedorn Frandsen1, Oleksiy S. Kim2, Olav Breinbjerg2, Fengwen Wang3, Ole Sigmund3, Aliaksandra Ivinskaya4, Andrei Lavrinenko1, Philipp Gutsche5, Sven Burger5, Teppo Häyrinen1 and Jesper Mørk1

1 DTU Fotonik, Department of Photonics Engineering, Technical University of Denmark
2 DTU Elektro, Department of Electrical Engineering, Technical University of Denmark
3 DTU Mekanik, Department of Mechanical Engineering, Technical University of Denmark
4 ITMO University, St. Petersburg, Russia
5 Zuse Institute Berlin, Germany
* ngre@fotonik.dtu.dk

Five computational methods are benchmarked by computing quality factors and resonance wavelengths in photonic crystal membrane L5 and L9 line defect cavities. Careful convergence studies reveal that some methods are more suitable than others for analyzing these cavities.

Geometry under study

The photonic crystal (PhC) membrane represents a platform for planar integration of components, where cavities and waveguides may play a key role in realizing compact optical components. A finite-length defect waveguide forms an Ln cavity, where n denotes the length of the cavity. Such Ln cavities support spectrally discrete optical modes, and the fundamental cavity mode profile of an L9 cavity is shown in Fig. 1. Light may be confined to such an Ln cavity for extended periods, as quantified by the quality (Q) factor. The Q factor thus represents a key parameter in the design of a PhC membrane cavity.

Table 1: Calculated Q factors and resonance wavelengths λ.

<table>
<thead>
<tr>
<th></th>
<th>FDTD</th>
<th>FDFD</th>
<th>FEM</th>
<th>SIE</th>
<th>FMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>λL5 (nm)</td>
<td>1568</td>
<td>1572</td>
<td>1571</td>
<td>1572</td>
<td>1567</td>
</tr>
<tr>
<td>λL9 (nm)</td>
<td>1574</td>
<td>1580</td>
<td>1578</td>
<td>1579</td>
<td>1570</td>
</tr>
<tr>
<td>QL5</td>
<td>1670</td>
<td>1725</td>
<td>1705</td>
<td>1707</td>
<td>1700</td>
</tr>
<tr>
<td>QL9</td>
<td>104,000</td>
<td>108,000</td>
<td>105,000</td>
<td>104,000</td>
<td>60,000</td>
</tr>
</tbody>
</table>

Methods and results

The combination of the large size of the PhC Ln cavity and the full 3D nature of the geometry makes the calculation of the cavity Q factor an extremely demanding numerical challenge. In this work, we focus on two structures, a low-Q L5 cavity and a high-Q L9 cavity. We employ five different computational methods, the finite-difference time-domain (FDTD) technique, the finite-difference frequency-domain (FDFD) technique, the finite-element method (FEM), the surface integral equation (SIE) approach and the Fourier modal method (FMM), to compute the cavity Q factor and the resonance wavelength for both structures. For each method, the relevant computational parameters are systematically varied to quantify the computational errors. The final results summarized in Table 1 show that the resonance wavelengths agree fairly well for the two geometries among the five methods. On the other hand, significant deviations are observed for the Q factor. Our study highlights the importance of careful convergence checks and systematic estimation of the computational error, both of which are generally missing in the literature.