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Summary (English)

Su�cient data is key when training Machine Learning algorithms in order to
obtain models that generalize for operational use. Sometimes su�cient data
is infeasible to obtain and this prevents the use of Machine Learning in many
applications. The goal of this thesis is to gain insights and learn from data
despite it being limited in amount or context representation. Within Machine
Learning this thesis focuses on Convolutional Neural Networks for Computer
Vision. The research aims to answer how to explore a model's generalizabil-
ity to the whole population of data samples and how to interpret the model's
functionality. The thesis presents three overall approaches to gaining insights
on generalizability and interpretation. First, one can change the main objective
of a problem to study expected insu�ciencies and based on this make better
a choice of model. For this �rst approach the thesis presents both a study on
translational invariance as well as an example of changing the objective of a
problem from classi�cation to segmentation to robustly extract lower level in-
formation. The second approach is the use of simulated data which can help by
inferring knowledge in our model if real data is scarce. The results show clear
advantages both when using rendered Synthetic Aperture Radar images, but
also when predictions from physical models are used as target variables which
are matched with real data to form a large dataset. The third approach to cope
with data insu�ciencies is to visualize and understand the internal representa-
tions of a model. This approach is explored and concrete examples of learnings
that can be obtained are shown. There is no doubt that large quantities of well
representing data is the best foundation for training Machine Learning models.
On the other hand, there are many tools and techniques available to interpret
and understand properties of our models. With these at hand we can still learn
about our models and use this knowledge to e.g. collect better datasets or im-



ii

prove on the modeling.



Summary (Danish)

Tilstrækkelige mængder af kvalitets data er vigtigt til at træne Machine Lear-
ning algoritmer der generaliserer til operationelt brug. I visse tilfælde er det dog
ikke muligt at indsamle nok data og det forhindrer brugen af Machine Lear-
ning til mange problemer. Målet for denne afhandling er at opnå viden fra data
selvom data er begrænset i mængde eller i den kontekst det beskriver. Indenfor
Machine Learning fokuserer denne afhandling på Convolutional Neural Networ-
ks i billed analyse. Forskningen stræber efter at besvare hvordan vi kan sikre at
vores datamodeller generaliserer til hele populationen af data samt hvordan vi
fortolker vores modellers funktionalitet. Afhandlingen præsenterer tre generelle
indgangsvinkler til at opnå indsigt om generalisering og fortolkning. Den første
indgangsvinkel studerer både variation i objektplacering i billeder samt hvordan
man kan skifte fra en klassi�kationsmetode til segmentering når man vil vurdere
forskellige algoritmer. Den anden indgangsvinkel drejer sig om brugen af simu-
leret data som hjælper ved at overføre den viden vi allerede har om problemets
natur til et Convolutional Neural Network når rigtig data er knap. Resultater-
ne viser klare fordele både når man bruger syntetiserede billeder i træningen
af en model, men også når forudsigelser fra fysiske modeller bruges som out-
put variable der matches med rigtig data. Den tredje indgangsvinkel er at lære
om vores datamodeller ved at visualisere deres repræsentation af data. Denne
indgangsvinkel udforskes og konkrete eksempler på hvad man kan lære vises i
afhandlingen. Der er ingen tvivl om at store mængder af struktureret data er
det bedste fundament for Machine Learning, men der �ndes mange teknikker
og metoder til at fortolke og forstå egenskaberne af vores modeller. Med disse
metoder kan vi stadig lære om vores modeller og bruge den viden til at forbed-
re dem ved f.eks. at målrette indsamlingen af data eller forbedre modellernes
egenskaber.
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Preface

This thesis is part of the ful�llment of the Danish Industrial PhD program. The
project is a collaboration between the Technical University of Denmark and
Terma A/S with support from the Innovation Fund Denmark.

The PhD project entitled "Classi�cation of Targets in Synthetic Aperture Radar
Imaging" set out to investigate classi�cation models for Synthetic Aperture
Radar images. While the title and scope of this thesis have changed slightly
to focus on the statistically derived models known as Convolutional Neural
Networks, the thesis still answers essential questions for the project. Since
Convolutional Neural Networks have in recent years been considered state of
the art models in image classi�cation, segmentation, etc., these constituted a
promising solution to the problem at hand. In order to mature these models
for the application, a deeper understanding was needed. Often, we face the
problem that fully representative datasets are hard to obtain. How we can gain
information from the data we have and how we can increase model generalization
is the scope of this thesis. The thesis presents di�erent approaches to obtain
insights when dealing with datasets of limited representativity. These topics are
ordered in three parts, Experimental Setup, Simulated Data and Interpretations.

Lyngby, 31-August-2017

David Malmgren-Hansen
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Chapter 1

Introduction

The �eld of Computer Vision concerns a wide range of applications and problems
related to automatic interpretation of visual data. The tasks can be to classify
objects, segment images, render visual scenes, reconstruct geometries, measure
color or structure, etc. Many of these problems have traditionally been solved by
engineered image transformations that infer prior knowledge on the problem at
hand. The advantage of this approach is that if we �nd improvements with the
transformations, we know that our assumptions on prior knowledge were right.
For example, in order to recognize the same object in two images taken from
di�erent positions, angles and illumination conditions, our representation needs
to be scale, rotation and intensity invariant, as shown in [Low99]. Convolutional
Neural Networks (Convnets) turn this approach around and aim to learn useful
image transformations from a set of images. In this way we can solve problems
without inferring prior knowledge and possibly explore trained models to learn
about new relevant image transformations.

1.1 Scope

This thesis explains and explores the properties of Convnets that make them
interesting in a Computer Vision context. The original project scope aimed to
investigate current state of the art image classi�cation algorithms. This goal has
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been slightly changed by applying a focus on Convnets. A deeper understanding
of Convnets was found necessary to progress towards practical solutions in Au-
tomatic Target Recognition (ATR) for Synthetic Aperture Radar (SAR) data.
The overall goal is to explore how we can gain information from data in situ-
ations where our datasets have limitations. We refer throughout this thesis to
limited datasets as datasets that are limited in either size, context representa-
tion (e.g. imbalanced categories) or datasets that lack the variances expected in
the respective application (e.g. scale, rotation, or background variation). Lim-
itations to datasets are critical to generalizability. In this thesis we think of
generalizability as how well a model trained on a set of samples can be extended
to the whole population. Closely connected with estimating generalizability is
the ability to interpret a model's function. If we understand how a model works
we have a better foundation for understanding the generalizability without test-
ing the model on the whole population. The thesis goals are highly relevant for
SAR ATR where high operational costs limit the possibility of collecting large
suitable datasets. The �ndings from this thesis can be used for Convnets in
general, however the experiments are mostly focused on Remote Sensing and
SAR data, to remain in line with the original scope of the PhD project.

1.2 Outline

Chaper 2 - Theoretical Background, provides basic understanding of two topics
which are important to the thesis, Convnets and SAR sensors. The following
three chapters (3, 4, 5) covers the papers published during the PhD project as
follows,

ˆ Chapter 3, Experimental Setup - Paper A, B.

ˆ Chapter 4, Simulated Data - Paper C, D, E.

ˆ Chapter 5, Interpretations - Paper F.

Each chapter introduces the published contributions, explains their relevance
in an overall context, and ends with a conclusion. Further, since not all work
carried out in the project was published, some chapters contain additional exper-
imental results. The thesis closes with a Discussion and Outlook, summarizing
the �ndings and discussing the perspectives of the Convnet approach to solve
computer vision problems.



Chapter 2

Theoretical Background

This chapter provides the reader with background information within two main
topics of this thesis, Convolutional Neural Networks and Synthetic Aperture
Radar data. If the reader is familiar with these subjects, this chapter can be
skipped as it will not be referenced later in this thesis.

2.1 Convolutional Neural Networks

A Convnet is a Neural Network with one or more convolutional layers. The
convolutional layer convolves a �lter kernel over every variable position of an
input as a opposed to a fully connected layer that typically would have a desig-
nated weight for each variable. The idea is to learn feature detectors, i.e. �lters
that enhance properties relevant to the given task while achieving invariance to
irrelevant properties such as scale, rotation, translational shift etc. This is no
di�erent than what computer vision has aimed to achieve with manually engi-
neered feature detectors in the past, but Convnets provide a framework to learn
the features from data instead. Since a convolutional layer will look for local
patters in input data (within the size of the kernel), rather than global patters
as a fully connected layer, it is well suited for data that are, e.g. sampled with
temporal or spatial relations. The local patterns found by a convolutional layer
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Figure 2.1: Example illustration of a Convnet from Paper F. Summation signs
over c is sum over c input channels. Squares denote feature maps,
i.e. outputs from convolutional layers. The blue arrows represent
the chosen subsampling scheme e.g. max-pooling, and the small
circles are neurons in fully connected layer

will become feature enhances/detectors for subsequent layers.

By stacking convolutional layers, see Figure 2.1, Convnets enable early layer
�lters to enhance simple features useful for describing a range of visual context
classes, while deeper �lters will become more specialized to solve the speci�c
task. This hierarchical structure is information e�cient in the sense of repre-
senting a range of image data context with as few features as possible. Whether
the intended hierarchical structure is in fact learned is a challenge to verify,
however visualization techniques for Convnet interpretations have shown it to
be true for some datasets, [ZF14].

2.1.1 History

It is not the intention to give a thorough description of past research in Neural
Networks. Four main events however summarize the contributions leading to
the vast use of the models we are currently witnessing. These are the following:

1. McCulloch and Pitts (1943) introduction of mathematical models inspired
by neural activities in the human brain [MP43]. Their work was followed
up by Rosenblatt, [Ros58], who showed how a probabilistic version of these
models could learn from observations.

2. The idea of learning internal representations by means of error-propagation
[RHW85], known as back-propagation, was introduced by Rumelhart et
al.
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3. Yann LeCun et al. (1989), [LBD+ 89], applying back-propagation to Neural
Networks that included convolutional layers inspired by studies on the
visual cortex performed on animals by Hubel and Wiesel (1962) [HW62].

4. Alex Krizhevsky et al. performed a GPU accelerated implementation of a
Convnet on a large scale image problem [KSH12].

Generally, the success of event 4 is largely credited to the availability of a�ord-
able fast computing platforms (GPUs) and access to large datasets compiled
from internet downloads. Despite these facts playing a major role in their suc-
cess, Alex Krizhesky et al. contributed with concepts that are now a part of
the Neural Network research era from 2010 to 2015, in which the ease of Neural
Network training was drastically improved. The most important contributions
in this era are Recti�ed Linear Units (ReLU) [NH10], Dropout regularization
[SHK+ 14], theoretically derived weight initialization [GB10], batch normaliza-
tion [IS15] and data augmentation [KSH12].

Recti�ed Linear Units as activation functions, de�ned as � relu (x) = max(0; x ),
have the property of a very simple gradient. The idea is that this leads to
numerical stability and faster convergence during the training process, which was
experimentally shown in [KSH12]. Further, one can achieve faster convergence
by initializing weights in such a way that the product sum of inputs and weights
for each layer sums up to approximately one, [GB10]. One could argue that
initialization is redundant since the network should learn some solution despite
initial values of weights, but due to the iterative update scheme of weights,
clever initialization can lead to saving a large amount of computation. Since
modern Convnets and computer vision tasks are large, saving computations can
be the di�erence between converging within feasible time or not, and is therefore
crucial. Further, since our update schemes are based on iterating towards an
error minimum with a �xed or adaptive step size the initialization can in�uence
whether we get stuck in a poor minimum or not.

For each solution to the weight matrix of a Neural Network there exists an in-
�nite amount of equal solutions where weights upon following layers are scaled
relatively. In principle we do not care which of these solutions we �nd, but
we would like the weights not to shift between these relative scaling of weights
during training. Often referred to as covariate shift, the relative transforming
of weights between layers slows down the training process if the weights alter
between these solutions. Batch Normalization aims to prevent this by always
scaling the output of the network layers to have zero mean and unit variance.
Such normalization reduces the Convnet learning capability, so batch normal-
ization introduces two additional parameters to shift layer output distributions
away from zero mean and unit variance. These two parameters are updated dur-
ing gradient descent training together with the layer weights and can cancel the
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normalization if necessary. Though it intuitively might seem contradicting that
the normalization can be canceled, Batch Normalization has experimentally
shown useful as a sort of regularizing constraint that enables higher learning
rates, [IS15].

Dropout is another regularizing scheme. It aims to emulate ensemble model
prediction of models with shared weights. The need for this arises since a real
ensemble of Neural Networks would often be infeasible due to computational
costs. Applied to a network layer, Dropout skips the update of each layer node
with a given probability in an iteration of the update scheme. A node is either
a neuron in a fully connected layer or a �lter kernel from a Convolutional layer.
Dropout prevents co-adaptation of weights and thereby over-�tting behaviours
otherwise known as a common problem for Neural Networks. To further pre-
vent over-�tting Data-augmentation can as well be applied. It aims to prevent
over-�tting by considering every transformation of an input sample x that has
relevance to the task being solved, as an additional training sample. Typical
Data-augmentation transformations for images is zooming, rotation, scaling,
shifting etc.

Another technique for Neural Network training that has eased the procedure is
the adaptive control of learning rates. In order to achieve fast convergence and
a stable reduction of the error function simultaneously, learning rates must be
reduced during training. One can do this by linear reduction of the learning rate
as a function of iterations in the training. Alternatively, two popular approaches
named RMSprop, [HSS12], or ADAM, [KB14], can be used. These methods
control learning rates with relation to the gradient of the error function.

2.1.2 Optimization

A set of weights for a Neural Network W is often found according to the max-
imum likelihood solution to the given problem. As we will see this yields a
natural choice for the model's output and error function, [Bis06]. For a classi�-
cation task with K mutually exclusive classes, Bayes theorem on the posterior
probability of the k'th class can be rewritten,

P(Ck jx) =
P(Ck )P (xjC k )

P(x)

=
P(Ck )P (xjC k )

P K
j =1 P(C j )P (xjC j )

(2.1)

=
eak

P K
j ea j

; ak = ln(P (Ck )P (xjC k )) (2.2)
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In Equation 2.1 the observation probability, P(x), is expanded with the law of
total probability. Equation 2.2 is known as the softmax function and when used
as output function in a Neural Network, the k'th output ak for k = 1; :::; K
will represent the logarithm of the evidence,P(xjC k ), multiplied with the prior
probability on the class, P(Ck ). Given the probabilities from the network we
shall consider an error function (also known as the objective or loss) to explain
the distribution of an estimated target vector's probabilities. In most practical
cases there is one class label per sample, which can be encoded as a vectort
with one element equal 1 corresponding to the correct class and zeros in all
other elements. For a mutually exclusive classi�cation problem this is simply
the product of individual Bernoulli distributed probabilities,

p(tjx; W ) =
KY

k=1

yk (x; W )t k (2.3)

Where yk () is the function for the k'th output of our Neural Network and tk

being the k0th element of our target vector t. When taking the negative loga-
rithmic likelihood and considering the sum over allN samples in a given dataset
we get an error function,

E(W ) = �
NX

n=1

KX

k=1

tk ln(yk (x n ; W )) (2.4)

Equation 2.4 is known as the categorical cross entropy.

In the case of a multi target regression with Neural Networks we follow the same
approach exchanging the conditional distribution with the one appropriate for
the given data. Commonly a Gaussian distribution is used and independent tar-
gets are assumed. With the independence assumption the likelihood is reduced
to the product of the individual posterior probabilities of each target, Equation
2.5.

p(tjx n ; W ) =
LY

l =1

p(t l jx n ; W ); (2.5)

n represents a speci�c sample over andL is the number of target variables in
our regression. The targett is no longer an encoding of class probabilities but
a vector of continuous target variables with t l being the l 'th element. If we
consider our prediction a target estimate with a Gaussian distributed error,

t = y (x n ) + en ; e � N (0; � ) (2.6)

we can obtain a maximum likelihood solution to the regression,

p(t l jx n ) =
1

p
2�� 2

e
(y l (x n ;W )�t l ) 2

2� 2 (2.7)
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This reduces to the sum of squares error function when taking the negative log-
likelihood and discarding constants. We can write this over allN samples in
our dataset for all L targets as,

E =
NX

n=1

LX

l =1

(yl (x n ; W ) � t l;n )2 = ky(x n ; W ) � t n k2 (2.8)

which gives the least squares error function. The output function of the Neural
Network should be selected appropriately. If we do not make assumptions on
the nature of our signal, the output of the last layer in the model should be
a linear projection of the previous layer's outputs. In some cases there might
be reasons to change the output function, e.g. if we are predicting targets that
have upper or lower bounds.

2.2 Synthetic Aperture Radar

A Synthetic Aperture Radar (SAR) is an imaging sensor based on the principles
of radar technology. It has to be operated on a moving platform, typically
an airplane or satellite, and it records the terrain in a line scanning manner
with each line perpendicular to the �ight trajectory. Since a SAR is based on
emitting electromagnetic waves from a source carried on board the platform, it
is capable of recording day and night. Further, since the SAR sensors operate
at lower frequencies than optical systems they are capable of looking through
clouds. The capabilities to record any time of day and in all weather conditions
are very useful for many applications. Figure 2.2 depicts the geometry of a SAR
system in a 3D coordinate system representing its environment. By having
an antenna looking widely, the radar receives target re�ections from several
positions along its trajectory (x). The varying distance to the target within
these re�ections leaves a modulated pattern in the received signal that is given
by distance to the target, the antenna beam width and the velocity of the SAR
platform. When the signal is demodulated, energy is concentrated in the center
position of the received signal, i.e. the SAR signal is focused.

There are three distinct features commonly present in SAR images. As a SAR
system emits a coherent signal in order to measure the phase of re�ections, an
unwanted signal called speckle arises when multiple scatterers are present in one
resolution cell. This is due to the complex summation of the multiple scatterers,
and speckle will follow a Rayleigh distribution in the amplitude component.
If V = ( X; Y ) denotes a vector with two independent Gaussion distributed
elements with zero mean and equal variance, the Rayleigh distribution is the
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(a) (b)

Figure 2.2: (a): A SAR trajectory illustrating how a 3D coordinate system
is mapped along trajectory axis, x, and slant range axis, r . (b):
Depression angle illustration. P is the SAR sensor position,H the
height above ground andy the ground range axis.

distribution of the length L given,

L =
p

X 2 + Y 2 (2.9)

A SAR signal is measured by two complex components,(x; y ), in rectangular
coordinates. Speckle will in�uence each component with a Gaussian distributed
variance. So the joint distribution of (x; y ) becomes,

(x; y ) = x + iy (2.10)

p(x) =
1

p
2�� 2

e� x 2

2� 2 (2.11)

p(x; y) = p(x)p(y ) =
1

2�� 2 e� x 2 +y 2

2� 2 (2.12)

When the complex signal is converted to polar coordinates to get the amplitude
of the backscatters the amplitude distribution will be,

aei� =x + iy (2.13)

a =
p

x2 + y2 _ � = tan �1 y
x

(2.14)

p(a) =
a
� 2 e� a 2

2� 2 ; a � 0 (2.15)

p(� ) =
1

2�
; 0 � � < 2� (2.16)

where we see that the amplitude follows a Rayleigh distribution while the phase
is uniformly distributed. The relationship between Equation 2.12 and 2.15 can
be found by exchanging variables and introducing an equal integral in rectangu-
lar and polar coordinates. Speckle is a multiplicative signal source hence higher
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backscatter will lead to higher amount of speckle. Often SAR images are �ltered
with a spatial moving average operation (multilook SAR image) to reduce the
speckle.

Figure 2.3: SAR terrain picture from the MSTAR project (background im-
age).

Figure 2.3 shows a SAR image of a terrain, with a road (dark - i.e. low backscat-
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ter), �elds, trees and some houses/buildings. A common feature of SAR images
can easily be observed in form of shadows behind each object rising above the
ground. Due to the recording geometry of a SAR, objects that rise above ground
will cast shadows behind them. Lower depression angles will yield longer shadow
casts. Another feature commonly found in SAR images is foreshorting. Since
signals are recorded along ther -axis on Figure 2.2 (slant range), re�ections from
elevated scatterers may appear before re�ections from closer to the ground. This
can make tall trees or mountains appear distorted compared to aerial recordings
from optical instruments.

2.2.1 Polarimetric SAR

A number of con�gurations for SAR sensors need to be chosen during the design
phase dependent on the application. Spotlight SAR are systems with steerable
antennas that focus on a given area in order to achieve the higher cross range
resolution at the cost of lower ground coverage. Di�erent radar frequencies
can be chosen depending on the application. Examples of applications where
frequency is important are forest biomass estimations or estimation of water
content in snow, [BFG+ 99, RHP+ 94]. In the application of forest biomass esti-
mation certain SAR frequencies are suitable, as scattering is received from both
tree crowns as well as the forest �oor. Another SAR design choice is polarization
of the transmitted and received radio waves. Fully polarimetric SAR systems
can provide additional information about scatterers. The additional informa-
tion comes from the interaction between polarized transmitted signal and the
scatterer geometry. The orientation of di�erent parts of an object's geometry
will result in di�erent polarized backscatter signatures. A fully polarimetric
SAR acquires four backscatter measures at di�erent combinations of transmit-
ted and received linear polarizations, HH, HV, VH and VV. An average of the
two signals from the cross polarized measurementsSHV and SV H can be used to
reduce the noise on these components, [Skr12]. A scattering covariance matrix,
[UE90], can be constructed for every pixel as,

k = [ SHH S0
HV SV V ]T ; S0

HV = 0:5(SHV + SV H )

Z =
1
N

NX

n=1

k(n)k(n) �T

=

2

4
hjSHH j2i hSHH S0�

HV i hSHH SV V i
hS0

HV S�
HH i hjS0

HV j2i hS0
HV S�

V V i
hSV V S�

HH i hSV V S�
HV i hjSV V j2i

3

5

where h:i denotes the multilook operation and � the complex conjugate. Since
the covariance scattering matrix is hermitian, i.e. the o� diagonal elements are
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complex conjugates of each other, each pixel in our �nal polarimetric SAR image
can be represented by the six unique elements. The o�-diagonal elements are
complex numbers while the diagonal elements are real numbers. Polarimetric
SAR images can be visualized as RGB color images by their diagonal elements
of the scattering covariance matrix. A common used color encoding isjSHV j2

for the red channel, jSHH j2 for the green andjSV V j2 for the blue, as this yields
the most natural looking colors. An example of this encoding can be seen for
the EMISAR dataset on Figure 2.4.

Figure 2.4: Color coded polarimetric SAR image from the EMISAR Foulum
dataset, June recording.

Such color encodings can help visualize the di�erences of scattering patterns in
the signal. In Figure 2.4 we see di�erent colors on the �els which arise from the
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di�erent polarimetric scattering signatures.
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Chapter 3

Experimental Setup

In order to solve a classi�cation problem, a Convnet needs a representative set
of sampled training data which covers expected variances. In many sciences
and applications, gathering su�cient data with associated targets values can
be a very hard task and remote sensing is no exception. If we consider a re-
�ectance spectrum measured by an airborne optical instrument, the re�ectance
will include variance due to time of the day, weather conditions, atmospheric
conditions, view incidence angle, geographic location, transient changes, etc.
One can tackle this data challenge in two ways. The �rst option is to collect as
large a dataset as possible and aim to cover enough variance. While this is not
always possible, another approach is to accept the limitations of gathered data
and try to understand the model's capabilities and ability to generalize. With
this understanding new data collection can be focused to extend the models
capabilities or models with built-in invariance towards the data pitfalls might
be explored. In this chapter we consider a simple classi�cation task on a lim-
ited dataset. By changing the objective from studying the accuracy on this
task, which we know do not generalize to operational use, we can still obtain
learnings from the dataset.
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3.1 Classi�cation

The MSTAR dataset was recorded during the mid nineties in order to improve
the data foundation for research in Automatic Target Recognition (ATR) for
SAR images. It consists of 10 military vehicles recorded with an x-band SAR
radar at 30x30 centimeter pixel resolution. A description of the dataset can be
found in Appendix A.1. MSTAR is known to be a very limited dataset in regards
to meeting the variability of an operational scenario and according to [RWV+ 98]
it can not be considered a random subset of real world data. It lacks variability
both in terms of depression angles where it is limited to 15°and 17°but also in
terms of background variation and the very limited number of vehicles recorded.
The dataset is not meant to give a performance score of operational SAR ATR,
but can still be used to gain insight into how SAR data can be modeled. As
the training set contains solely 17°depression angles and the test set 15°the
model's ability to generalize over 2° depression angle variation can be studied.
Since the depression angle is changing the appearance of objects in SAR images
signi�cantly due to the slant range and ground range relationship, robustness
towards depression angle variation is relevant to study.

One of the �rst benchmarks of Convnets on MSTAR was performed in [Mor15].
The network used in [Mor15] is relatively shallow compared to the ones reported
in [SVZ13] and [SLJ+ 15] for the ImageNet large scale image recognition chal-
lenge. Given the more simple problem in MSTAR and a lot fewer images it is
reasonable to believe a smaller architecture is su�cient. When it comes to de-
signing an architecture for a Convnet there is little theoretical foundation to rely
on. Deep Learning is an experimentally driven �eld, and following best prac-
tices and related work is the best initial starting point for every new problem.
Automatic hyperparameter optimization can at best be applied in a subset of
the hyperparameter space since there is no limit to how many hyperparameters
a Convnet architecture can have. For every new layer we add, we can change
its size, its activation function, whether to include pooling layers or not, and
even more. Further, when the number of parameters grow, so does our training
time, and this always introduces an upper practical limit to how big models we
can explore. While the Convnet reported in [Mor15] achieved a reasonable per-
formance of 92.3% we found that it could be additionally improved by following
some best practices developed before and after the publication. These build on
the following concepts and experiences,

1. Logarithm transform of SAR pixel values. Since the MSTAR images con-
tained some pixels with value 0, we added a small number, took the 10
base logarithm, before normalizing pixels to zero mean and unit variance.
In SAR applications logarithmic transform is often performed in order to



3.1 Classi�cation 17

make the multiplicative speckle signal additive. Further, the logarithmic
transformation has advantages when visualizing SAR images as the high
dynamic signal range is mapped so lower backscatter patterns are easier
visible together with higher backscatters.

2. Smaller �lter kernels impose parameter and computational sparsity, [SVZ13]

3. Dropout regularization. Though often resulting in a need for higher num-
ber of parameters in a model, dropout is often seen to increase the end-
performance, [SHK+ 14].

4. Batch Normalization layers, [IS15], added after each convolutional layer
in order to reduce covariate shift and thereby achieve faster convergence.

5. Adam (Adaptive Moment), [KB14], optimizer scheme to continuously con-
trol learning rates during optimization as opposed to the �xed learning
rates in [Mor15] that were reduced by a factor of 10 after a 3000 itera-
tions.

The �nal network architecture of our proposed network can be seen in Table
3.1. With this architecture we reach a performance of 99.19% accuracy after
1000 epochs, which takes 1½hour trained on a NVIDIA Titan Black GPU.

A benchmark of di�erent classi�ers on MSTAR was performed as an initial study
in this project and can be seen on Figure 3.1. The SVD+SVM method refers to
an approach inspired by [DS83], where 10,0009x9 pixel patches were extracted
from the training images in MSTAR and a singular value decomposition over
these was performed. This lead to a set of decomposed patches explaining the
majority of local variances in the images which can be used as feature extraction
�lters.

Since the Convnet and the SVD+SVM methods contain a �ltering step before
classifying the images, it is not surprising that they perform well. More surpris-
ing is the fact that some of the other approaches, that work entirely based on
�nding decision boundaries between the pixel vectors that the MSTAR images
span. The linear Support Vector Machine (SVM), K Nearest Neighbours (KNN)
and Linear Disciminant Analysis (LDA) all achieve >75% accuracy. Keeping in
mind the unrealistic simplicity of MSTAR images misleading choices of classi-
�ers can be made if only tested on MSTAR. Alternatively, one can study speci�c
robustness of classi�ers with simulated data.

In Paper A we show that Covnets perform better compared to other classi�ers
when introducing translational variance. The experiments were performed on a
simulated SAR ATR dataset in order to create di�erent datasets with di�erent
amount of object translation. By using a simulated dataset we ensure that
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Table 3.1: The Convnet architecture presented below has 763678 trainable pa-
rameters. It reached a test accuracy of 99.2% on MSTAR 10-class
benchmark. The process names refer to function names from the
Deep Learning software library Keras, [C+ 15].

Process Parameters Parameters Description

Input (128,128) MSTAR image size [pixels]
Conv2D (12,5,5) (Number of kernels, kernel width and height)
BatchNormalization
Activation ReLU Function type
MaxPooling2D 3x3 Pooling window size.
Dropout 30% Probability of a node getting dropped.
Conv2D (36,5,5) (Number of kernels, kernel width and height)
BatchNormalization
Activation ReLU Function type
MaxPooling2D 2x2 Pooling window size.
Dropout 30% Probability of a node getting dropped.
Conv2D (72,5,5) (Number of kernels, kernel width and height)
BatchNormalization
Activation ReLU Function type
MaxPooling2D 2x2 Pooling window size.
Dropout 30% Probability of a node getting dropped.
Dense 144 Fully connected layer size.
BatchNormalization
Activation ReLU Function type
Dropout 50% Probability of a node getting dropped.
Dense 144 Fully connected layer size.
BatchNormalization
Activation ReLU Function type
Dropout 50% Probability of a node getting dropped.
Dense 10 Fully connected layer size.
Activation softmax

models are perfectly centered initially. It is shown that a random translation of
the vehicle outside the image center by as little as 3 pixels drastically decreases
the performance on the tested classi�ers except for the Convnet, see Figure
3.2. Now, if we expect this kind of translational variance in real world data
we know we should look for classi�ers with similar properties of a Convnet
(�ltering/feature extraction combined with pooling schemes) when studying a
SAR ATR application. The details of the models tested in Figure 3.2 and the
simulated dataset used can be found in Paper A.
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Figure 3.1: Benchmark of di�erent classi�ers on the MSTAR dataset. The
Convnet performance shown here was before applying improve-
ments described in Table 3.1.

3.2 Segmentation

Alternatively to applying speci�c tests like translation invariance to gain in-
formation from limited datasets like MSTAR we might consider new ways to
extract information. An example could be to change the objective from classi�-
cation to segmentation and reduce the semantic problem to background, target
and shadow. This will enable us to pool the MSTAR data and create a la-
beled dataset in a new way. Due to the geometric properties of SAR, one can
roughly estimate the object size with a good segmentation mask of a target
and its shadow. SAR object segmentation can be performed with Convnets by
considering it a pixel-wise classi�cation. We propose to follow a method where
each pixel is classi�ed from a neighborhood of pixels to be either background,
object or shadow. In Paper B we enable this by estimating the ground truth
pixel annotation from Computer Aided Design (CAD) models of the targets
in MSTAR. First the CAD model is converted to a depth map by computer
graphic rasterization given the radar view angles. Secondly, these pixel-wise
distances are mapped corresponding to SAR geometry. The pipeline of this
approach is illustrated in Figure 3.3. This technique yields a simple annotation
of every pixel in the image that can be used to train a supervised segmentation
algorithm. Our annotation masks for all MSTAR images in the 10-way classi�ca-
tion tasks are publicly available via [MHNJ17]. The Convnet approach performs
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Figure 3.2: Translational invariance results of the �ve tested classi�ers.
Datasets of simulated SAR ATR data were generated with dif-
ferent amount of target o�-center translation in the image. For
each dataset the classi�ers were retrained and tested. While the
complexity of the task increases with translation, the dataset size
remained the same which explains the small decrease in perfor-
mance of the Convnet as well.

very well on the segmentation, speci�cally in �nding the boundary between a
target and its shadow. Other work on SAR segmentation algorithms typically
classi�es the boundary as background pixels due to the similarity of the values
[WKC + 99, AWZ02, HWH16]. However, �nding the boundary is important to
estimate the target height above ground.

3.2.1 The EMISAR Experiments

The pixel-wise classi�cation approach can be adopted to other applications with
even more diverse pixel classes. This is illustrated by applying the approach to
the EMISAR Foulum, Denmark dataset of crop classi�cation, [SST99]. The
EMISAR is a fully polarimetric SAR radar, i.e. capable of both transmitting
and receiving horizontally and vertically polarized electromagnetic waves. Fur-
ther, EMISAR is a dual radar system with both L-band and C-band recording
simultaneously with the goal of studying optimal con�gurations for crop classi-
�cation. The SAR map over the �elds of Foulum are shown in Figure 3.4 with
the outlines of their label masks. Pixels left of the dashed line are held aside
for the test set while the part on the right is used for training. The dataset
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(a) (b) (c) (d)

Figure 3.3: Pipeline in the SARBake algorithm presented in Paper B. Given
a MSTAR target vehicle (a) �nd a CAD model (b) render a depth
map from the radar view position (c) and convert the depths into
a mask of the target. Shadow distances can be calculated to a
�at ground easily by triangulation from edge points, but in our
approach a �at ground was rendered where the shadow distances
can read from. This allows for di�erent terrain models in more
complex scenarios.

consists of polarimetric scattering covariance matrices in each pixel position.
The o�-diagonal elements are complex numbers and when these are stacked
together with the diagonal elements as separate image channels, the resulting
image size of the EMISAR Foulum dataset are 1024x1024x9. As a preprocessing
step these channels are normalized by subtracting mean and dividing by stan-
dard deviation. The diagonal elements of the covariance matrix are Gamma
distributed. From experiments it was found an advantage to take the logarithm
of the Gamma distributed elements before performing a zero mean unit variance
normalization. A patch of size 21� 21 is extracted around every pixel containing
an annotated �eld. To avoid overlap between patches in test and training sets, a
ten pixel wide strip to the right of red line in Figure 3.4 is left out. The approach
is to train a Convnet to classify the center pixel of each patch. To cope with
an unbalanced amount of samples from the di�erent crop types smaller classes
where oversampled. This yielded better performance than under-sampling big
classes or weighing the loss function with the inverse samples size. With a model
architecture similar to the one used in Paper B, we achieved good performance
compared with other work on this dataset, [Skr12], [VDLN12]. In [Skr12] it was
shown that several temporal samples during a season of crop growth yield much
higher accuracy when combined with the polarimetric and frequency informa-
tion. Our approach achieved an error rate of 22% from a single temporal sample
with all polarimetric and frequency information. [Skr12] used a much simpler
approach to the classi�cation of crop types and achieved 41% error rate from
single temporal sample.
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Table 3.2: Results from EMISAR experiments with di�erent polarimetric and
frequency settings. The performances are given in error rates over
all test samples.

L-Band C-Band L+C-Band
Diagonal polarimetric elements 33% 36% 25%
All polarimetric elements 34% 23% 22%

3.3 Conclusion

Given the de�ciencies of MSTAR, the accuracy from a classi�cation model on
this dataset provides little knowledge about the problem of SAR ATR. By refor-
mulating the problem into experiments that overcome known challenges, such
as translation variance, we can still obtain useful information. Alternatively,
we have shown how well performing segmentation algorithms can be trained on
MSTAR and thereby yield information about object size in an automatic way.
The segmentation might be an indirect way of gaining information about a ve-
hicle, but it enables us to create an annotated dataset from existing data and
train a robust algorithm on a reduced semantic content. The annotation masks
have been made publicly available and provide a foundation for continuous ex-
periments on MSTAR based on supervised segmentation models.
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(a)

(b)

(c)

Figure 3.4: (a) EMISAR Foulum dataset with labels. (b) Convnet Prediction
on test set. (c) Confusion Matrix for the 6 classes.
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Chapter 4

Simulated Data

One of the success criteria for the Convnet by Alex Krizhevsky et. al [KSH12]
in 2012 was the availability of the large, labeled image dataset, ImageNet, which
has more than 1,000,000 images. Since 2012 Convnets have improved the score
in many computer vision benchmarks. Often though, not by only training the
Convnets on each benchmark dataset but largely also with help from the con-
cept of Transfer Learning. Gathering a labeled set of more than a million images
is a cumbersome task, but by �rst training a Convnet on ImageNet and then
further training it on another computer vision dataset with adequate similar-
ity, fewer images are needed in the second dataset. Transfer learning is still
mostly applied between datasets with the same modality but the objects in the
computer vision problem may be distinctively di�erent, [She16, NGM15]. We
will give an analysis of Transfer Learning by means of visualizations in Chapter
5. In this chapter we focus on how Transfer Learning can be used from simu-
lated data and how simulated data in general can play a role, when real data is
insu�cient. Simulated data, being data generated from models of physical phe-
nomena, can be seen as one way to add the existing prior knowledge when using
Machine Learning models. In the traditional computer graphics context simu-
lation are visual rendering of geometric models given knowledge of interaction
between light and material. This type of simulation is great as an alternative
to collecting datasets since it links the context to data samples and provides us
with an automatic way of obtaining large quantities of data with target labels.
For some applications, such as weather forecasting, large deterministic models
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based on physical constraints creates the link between past observations and
future predictions. These deterministic models can provide target variables for
other models that link measurements from e.g. satellite sensors, to the observa-
tions e.g. temperature, wind speed, etc. which are needed for weather forecasting
models to predict future states. This concept can be seen as another way where
simulated data impose the physical knowledge we posses into Machine Learning
models. In this chapter we will explore examples of both ways of generating
datasets and explain how they can be useful when dealing with limited data.

4.1 Simulated Input Data

LeCun & Bottou released the NYU Object Recognition Benchmark (NORB)
dataset in 2004, [LHB04]. NORB consists of stereo image pairs of ten toy
�gures from �ve generic object classes at several illumination levels and from
di�erent view angles. NORB can be seen as a way to simulate a real object
recognition scenario, hence the generalizability from models trained on NORB
is an interesting aspect. In [LHB04] encouraging results of the generalizability
between NORB and real world objects were shown, although no training on
images of real world objects was performed. Another way to gather data from
a controlled set-up is by computer simulations. Due to the access to large
databases like ImageNet and the concept of Transfer Learning, little need has
been present for simulations of natural images. Simulation can be a part of
the solution in computer vision problems, where transferring models trained on
ImageNet do not provide a meaningful approach.

In Paper C we present the concept of Transfer Learning between simulated
images and real images and provide an experimental analysis in the SAR ATR
context. Recent advances in SAR simulation tools have enabled the use of
simulated data as a part of the foundation for ATR models, [ØKCL16, KAD16].
An example from the SARSIM (Appendix A.2) dataset can be seen on Figure
4.1. It was developed by the National Space Institute at the Technical University
of Denmark, [KAD16], and provides the foundation for the experiments in Paper
C.

The main idea of Paper C is the concept of using Transfer Learning between
simulated data, SARSIM, and the objective dataset, MSTAR. This concept will
have several advantages over approaches that require simulation of the exact
objects in the objective dataset. First, SAR ATR targets in real world applica-
tions are rarely known to a degree where precise CAD models can be obtained.
Second, precise CAD models of certain objects are cumbersome to build and
requires high amount of manual labor. With Transfer Learning we aim to learn
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Figure 4.1: Left: MSTAR image of T72 tank. Right: SARSIM simulation of
T72 tank. CAD models of exact MSTAR vehicles are not avail-
able so the simulated image is an estimation based on an online
available model of same type.

generic object representations on our simulated dataset that can be transferred
to a real SAR image problem. We show that the simulated objects do not have
to be replicas of the objects in the objective dataset on a vehicle classi�cation
task. The CAD models used for simulations in our experiments are high quality
available models from the di�erent CAD model sharing web pages. Our classi-
�cation accuracy on MSTAR improves, especially under conditions with little
training data available as seen on Figure 4.2. Further, we show that the training
time can be reduced when a network is pre-trained on simulated data.

As MSTAR does not contain many of the real world challenges of operational
SAR ATR, the experiments have potential for further development. With the
literature on transferability of ImageNet in mind, it suggests that di�erent clas-
si�cation and interpretation tasks on SAR data could bene�t from pooling sim-
ulated datasets across a range of object categories. Land cover classi�cation
often looks for features in SAR images that distinguish city areas from e.g.
mountainous or agricultural areas, but these features might as well be shared
with algorithms for classifying vehicles. The potential for SAR ATR models
trained on a wider range of object categories might also be larger as robustness
is accumulated with a model trained within a broader context. The SARSIM
data has been made publicly available to encourage future work in SAR object
recognition to train on high-quality simulated data [KDS].
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Figure 4.2: Test performance after training on di�erent fractions of the
MSTAR dataset, with either pre-training on SARSIM or random
initialized network parameters.

4.2 Modeled Target Data

Predictive analysis is a key element in many remote sensing applications, such as
meteorology, climatology, geo-science, and several aspects of intelligence. While
it is easy to record large quantities of data from satellite borne imaging equip-
ment in Earth observation applications, it is usually labor intensive to obtain
ground truth information for it. Often it requires on site measurements in areas
that are hard to reach and in best case relatively few point measurements are
obtained. Large deterministic models built upon physical information of a sys-
tem such as weather models, can serve as an approximation of ground truth data
in some cases. While not representing the exact truth, these models can supply
target values for predictive algorithms on a global scale. This approach is taken
in Papers D, E where statistical retrieval of atmospheric parameters is studied.
The task is to predict temperatures at 90 di�erent altitudes in the atmosphere
from infrared sounder measurements. For this we investigate Convnets as re-
gression models on the infrared sounding images covering the Earth, containing
several thousand spectral image bands. Little literature is concerned with Con-
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vnets for regression, and in this particular case of multi dimensional input and
output regression new challenges are posed. The many spectral bands of infrared
sounding data pose a computational and statistical challenge. Dimensionality
reduction is therefore an important step in the regression pipeline. In paper
D Minimum Noise Fractions (MNF) are studied as an alternative approach to
Principal Component Analysis (PCA). The results show that MNF improve the
performance of the regression model for any number of decompositions included.
Further, the paper shows that a balance between spatial and spectral sampling
yields higher accuracy, a conclusion that lead us to explore the spatial feature
extraction properties of a Convnet in Paper E. The Convnet approach to at-
mospheric temperature modeling yielded both 32% RMSE improvement over
the commonly used Linear Regression, but also smoother predictions pro�les as
seen on the transects in Figure 4.3.

Figure 4.3: Left: Target surface temperature of the test set orbits from the
ECMWF weather model. Right: Transect pro�les of the atmo-
sphere along a line on Earth, top row shows target temperatures,
lower rows show the absolute mean error from 3 di�erent mod-
els. Altitudes of the pro�les are given in the atmospheric pres-
sure levels. The models tested are Linear regression with single
pixel samples, Linear Regression with 7x7 neighborhood pixel sam-
ples, Linear Regression with 15x15 neighborhood pixel samples
and Convnet with 15x15 neighborhood pixel samples.

A large performance gain was also seen over cloud-marked pixels for the Con-
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vnet. This is promising as cloudy pixels often are left out of these predictions
due to poorer accuracy. Large spatial coverage is important for the perfor-
mance of weather models. Inclusion of neighborhood pixels together with the
spatial feature extraction properties of Convnets seems to improve accuracy on
cloud-marked samples and thereby provide larger spatial coverage.

4.3 Conclusion

In Machine Learning we work within an optimization framework to relate a pre-
dicted target variable y , of the target t, from the input variable x with some
parameterized functiony = f (x; W ) with parameters W . This chapter provides
insights into exchanging x or t with simulations to provide additional data in
situations where it would not be possible to obtain it from direct measurements.
Paper C concerns the simulations of input data,x, since little real SAR ATR
data is publicly available. As accurate CAD models are rarely available for the
exact vehicles in a SAR ATR problem, the concept of Transfer Learning makes
use of available vehicle models from online 3D CAD communities. The �ndings
in Paper C are very practical and o�er a useful framework for SAR ATR. To
further close the gap between operational SAR ATR data and the simulations,
it is likely that SARSIM could be extended with more simulations. Extra simu-
lated data is needed both in terms of additional vehicle models to create higher
intra class variance, but also with more complicated background scenarios, such
as including trees or other vehicles in the background. Experiments on the in�u-
ence of simulation quality on performance is relevant future work, however, the
limited MSTAR is not optimal for these tests. Datasets with generally broader
context and variance in e.g. background would serve as a better foundation of
evaluating simulation quality.

Paper E works with simulated targets, t, since collecting enough real measure-
ments to match the radiance images from the IASI instrument is infeasible. The
model we train will be an emulator of the model that provides the target vari-
ables. Therefore, we cannot expect to capture physical phenomena not included
in the model which provides the target. Despite this, our emulator model can
still be useful for supplying global coverage of atmospheric temperature pro�les.
Since increased coverage in itself reduces uncertainty in numerical weather mod-
els, the result is useful. We also show in Paper E how the error in cloud covered
areas can be largely reduced by using a Convnet. In general, simulated data
can provide useful foundation for experiments when real data is scarce, but it
is important to know the limitations and approach the problem with the most
suitable framework.
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Interpretations

The deep structure of modern Convnets makes it di�cult to interpret the indi-
vidual layer's functionality. Each layer adds to the level of abstraction in the
data representation, resulting in increased interpretation di�culty. The high
number of layers is therefore both the strength and weakness of Convnets. Be-
ing able to interpret and understand is important, as it can reveal properties
about data generation (sensors), collection (datasets and their biases) and mod-
eling (being able to build robust models).

The most straightforward way to gain insights about a Convnet is to visualize its
internal representations as images. Convolutional layers work as image �lters,
and thereby preserve the spatial structure in the output. This fact makes it
possible to show its transformation of the input as an image as opposed to fully
connected layers' outputs. Most classi�cation Convnets contain pooling layers as
well, which reduces the resolution of these images, hence the approach works best
for early layers. Examples of MSTAR image projection by the �rst and second
layer of a Convnet trained for MSTAR classi�cation can be seen in Figure 5.1.
While it seems like the �rst Convolutional layer mostly perform noise reducing
or smoothing on the images, the second layer's �lters strongly enhance certain
features. Some enhance the shadow and some the target, while another enhances
the boundaries between shadow and target or target and background. The
SVD+SVM classi�cation approach presented in Section 3.1 also performs �lter
projections of the input image before the Support Vector Machine classi�cation.
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(a) Output from the �rst Convolu-
tional layer.

(b) Output from the second Convolutional
layer.

Figure 5.1: MSTAR SAR image of a T72 tank projected through �rst two
convolutional layers of a trained Convnet. The full Convnet ar-
chitecture is described in Table 3.1.

Examples of these projections are shown in Figure 5.2. While the �lters do not
exactly match the Convnet projections, there are similarities, e.g. projection 2
in Figure 5.1b and projection 1 in Figure 5.2. The similarities suggest that some
of the features a Convnet uses to classify the MSTAR vehicles are represented
by maximum variation of local pixel neighborhoods, i.e. the Eigen �lters found
by the SVD decomposition of local patches.

While this type of visualization shown here is useful in some cases it is insu�cient
when moving onto deeper layers of the networks. In deeper layers the abstraction
of �lters makes it complex to interpret. Another challenge when visualizing deep
layers is that the number of �lters usually grow. Instead of showing 12 outputs
as in Figure 5.1a we might have hundreds or even thousands for some modern
Convnet architectures, e.g. as the network in [SVZ13].

5.1 Occlusion Maps

In the concrete case of SAR ATR on MSTAR, interpretations are of great im-
portance to gain new knowledge. Since we know the dataset is not a subset
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Figure 5.2: SVD �lter projections from the SVD + SVM classi�cation ap-
proach explained in Section 3.1 of an MSTAR SAR image showing
the BTR60 vehicle.

of how objects appear in an operational scenario, we cannot consider training
a Convnet on MSTAR solving SAR ATR. On the other hand, learning how
an MSTAR trained Convnet represents the data can explain whether it would
generalize to an operational scenario. One well known limitation of MSTAR
is the stationary background during data collection, i.e. background correlation
between training and test data. Each object has remained on its exact location
during collection and di�erent azimuthal viewing angles have been obtained by
�ying by from di�erent sides. This fact is worrying since possible patterns from
stones, wheel patterns in the surface, or similar, will be correlated with a speci�c
label class between test and training set. In [SR04] the background was shown
to in�uence the classi�cation accuracy in a positive manner, indicating the prob-
lem of stationary backgrounds. The risk is our model learns to recognize these
patterns rather than features on the objects and thereby will not generalize to
operational data. In order to �nd out whether this happens with a trained
Convnet we can visualize parts of the images that are assigned high relevance.
Visualizing predictions and internal representations from Convnets has recently
gained increased interest. Several approaches to, e.g. determining which pixels
in the input image are of highest relevance to the prediction have been proposed
[ZF14], [BBM+ 15], [SVZ13], [SDV+ 16]. One approach is to produce occlusion
maps as proposed in [ZF14]. In this method we �nd an image that our model
correctly classi�es with high con�dence. By iteratively occluding the image with
a small mask on top of every pixel position and evaluating the probability of
the correct class, we obtain a map that directly shows the occlusion's e�ect on
the model's con�dence. Further, we can plot a discrete label map of the classes
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which the model predicts during occlusion. This reveals the positions where the
model's con�dence is lowered to such a degree that a misclassi�cation happens.
Examples of MSTAR image occlusion maps can be seen on Figure 5.3, while a
larger set of occlusion masks can be found in Appendix B. The method from
[ZF14] has been adjusted to �t the SAR image domain. Rather than a gray
occlusion mask, we use a patch of background pixels as occlusion mask. While
a gray mask might be neutral in the natural image domain, it is not in SAR
images due to their pixel value distribution. Further, we use a 10 pixel diameter
circular occlusion mask to create smooth probability maps.

The maps on Figure 5.3 show di�erent learnings. First of all they all seem
invariant to occlusions in the background. This indicates that our model su�ers
less from over�tting to background features than the study in [SR04]. On Figure
5.3a we see a circular pattern in the probability map with twice the diameter of
our mask. This pattern arises when one, or few, pixels are very important for the
model con�dence. It is generally worrying that one pixel is important for model
generalization, however there is a natural explanation in the case of MSTAR.
MSTAR is an identi�cation task of 10 speci�c vehicles, and it is therefore not
strange if signi�cant scatters of some targets make them easy distinguishable. In
classi�cation tasks where a certain object variance within classes is present, the
model behavior might be di�erent. If e.g. we are classifying vehicles into general
classes like "tanks", we would expect the cannon to be a signi�cant feature, but
in MSTAR there are four tanks that we must learn to distinguish. The ZSU23-4
vehicle on 5.3a has a parabola disk mounted on its top which yields a scatter
signi�cantly di�erent from all other targets (see picture in Appendix A.1b).
The ZIL131 truck in the occlusion map on Figure 5.3c is the tallest target in
the MSTAR dataset. Since the shadow cast in SAR images is dependent on the
target height we �nd a clear drop in con�dence when the shadow is decreased in
the upper part. In occlusion maps the model con�dence serves as quanti�cation
of the importance of image regions. One can also count number of occluded
pixels that leads to misclassi�cation and by this get a measure of model occlusion
sensitivity across datasets. This is shown in Tables 5.1 and 5.2 for target and
shadow pixels individually. The pixel annotation masks developed in Paper B
are used to mark which pixels belong to the object and which to the shadow.

The elements of Table 5.1 and 5.2 represent the percentage of pixels that falls
into each class when occluded. Low values in the diagonals are results of the
model being sensitive to occlusions in the given area. We can conclude that
the model is generally more sensitive to occlusions of the target rather than the
shadow.
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Table 5.1: The occlusion confusion matrix presents the classi�cations when
occluding pixels marked astargets in the annotation masks. The
diagonal elements are the percentage of times where occluding tar-
get pixels did not have a negative e�ect on the models classi�cation.
Low diagonal values indicate therefore that our model is sensitive
to target occlusion.

t72
tank

bmp2
tank

btr70
trans-
port

btr60
trans-
port

2s1
gun

brdm2
truck

d7
bull-
dozer

t62
tank

zil131
truck

zsu23-
4
gun

t72 tank 45 17 51 01 00 03 00 00 05 06
bmp2 tank 00 71 32 02 00 00 00 00 00 00
btr70 transport 00 03 96 02 00 00 00 00 00 00
btr60 transport 00 03 25 70 01 00 00 00 00 00
2s1 gun 00 04 20 01 69 16 00 00 02 00
brdm2 truck 00 00 00 00 00 100 00 00 00 00
d7 bulldozer 00 00 00 00 00 25 57 00 08 06
t62 tank 02 00 02 00 00 95 00 21 04 21
zil131 truck 00 00 00 00 00 02 00 00 98 00
zsu23-4 gun 00 00 00 00 00 21 00 00 04 81

Table 5.2: The occlusion confusion matrix presents the classi�cations when oc-
cluding pixels marked asshadowin the annotation masks. The di-
agonal elements are the percentage of times where occluding shadow
pixels did not have a negative e�ect on the models classi�cation.
That the diagonal elements are generally high means that the model
is not very sensitive to occlusion of the shadow for most of the
classes.

t72
tank

bmp2
tank

btr70
trans-
port

btr60
trans-
port

2s1
gun

brdm2
truck

d7
bull-
dozer

t62
tank

zil131
truck

zsu23-
4
gun

t72 tank 78 01 02 00 01 00 00 00 09 08
bmp2 tank 00 91 03 00 00 07 00 00 00 00
btr70 transport 00 01 98 00 00 00 00 00 01 00
btr60 transport 00 01 03 93 01 00 00 00 02 00
2s1 gun 00 00 01 00 93 01 00 00 04 00
brdm2 truck 00 00 00 00 00 100 00 00 00 00
d7 bulldozer 00 00 00 00 00 06 82 00 02 10
t62 tank 00 00 00 00 00 10 00 57 04 30
zil131 truck 00 00 00 00 00 00 00 00 98 03
zsu23-4 gun 00 00 00 00 00 01 00 00 00 99
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(a) ZSU23-4 Anti Aircraft Vehicle

(b) T72 Tank.

(c) ZIL131 Truck.

Figure 5.3: Left: original MSTAR image. Center: Probability of correct class
for each position of the occlusion mask. Right: color map where
each color represents the class that the network assigns the highest
probability, for each position of the occlusion mask.

5.2 Layer Activation Clustering

The idea of stacking several layers in Convnets is to break up feature represen-
tations in levels of increasing complexity. With this hierarchical structure early
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layers consist of general representations that can be used to describe image in-
formation across a broad range of context and deep layers become more speci�c
to certain classes. This type of image context representation allows for reuse
of features but whether this happens with trained networks is hard to prove.
[ZF14] proposed a method nameddeconvolutional networksas an approach to
visualizing feature extractions from layers in a Convnet. In their method an
image is �rst forwarded through a Convnet, then a layer node is selected for
visualization and the node's output is back-propagated into input image space
by inverted operations. This produces visualizations of the information left in
a deep layer with same spatial resolution as the input image. The Convnet ar-
chitecture used in [ZF14] has 1376 feature maps and additional 4096 neurons in
the fully connected layers. This high dimensionality poses a challenge regarding
selecting relevant maps to visualize and this is the limitations of most visual-
ization techniques. In Paper F we propose an unsupervised method to cluster
all feature representations in each layer of a network and produce a discrete
label map from the result. This leaves the user with much fewer visualizations
to interpret. The contributions of Paper F are twofold. First, we propose a
pipeline for feature map clustering that compresses the amount feature map
visualizations from possibly thousands to one per layer. Second, we use the
proposed method to explain why Transfer Learning with Convnets works very
well despite diversity of the datasets on which the model transfer is performed.

Figure 5.4: The �gure shows the labelmaps for an MSTAR image, for each
of three di�erent convolutional layers in a Convnet trained on
MSTAR.
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The proposed scheme to compress feature map visualizations considers each
node in a layer an element of an activation vector. A node is either a feature
map from a convolutional layer or a neuron from a fully connected layer. Each
layer produces activation vectors from all nodes in the given layer, which can
be clustered to �nd groups in the activations. We use the Dirichlet Process
Gaussian Mixture Model (DPGMM), [BJ + 06], clustering scheme as it has two
important properties for this application. First, it assumes underlying mixtures
to be Gaussian distributed clusters which suit this problem well assuming there
is some variance in the image representations. Secondly, it initializes an in-
�nite amount of mixtures (in practice a maximum number must be selected)
with priors sampled from the a Dirichlet process. These priors will have rapidly
decreasing probability and during optimization of the data likelihood many of
them will not be assigned any points. This provides an unsupervised cluster-
ing scheme that yields as few clusters as possible to �t the data. We �nd this
property well suited for our application since the number of feature represen-
tations inside the networks are unknown. While feature maps consist of many
activation pixels per image, the neuron from a fully connected layer yield one
vector per image. Two di�erent approaches to visualization and interpretation
are therefore taken. The result of clustering feature map activation pixels can
be restructured into label color maps for selected images as shown on Figure
5.4. The output of a fully connected layer has per de�nition pooled all spatial
information out of its representation of input data. Instead of interpreting spe-
ci�c feature representations, we suggest to interpret fully connected layers by
their ability to cluster a set of images and analyze the context that is preserved
in the resulting clusters. The results in Paper F show that meaningful context
representations exist in deep layers of an ImageNet trained networks when an-
alyzing microscopic cell images that the network never saw during training. It
explains why Transfer Learning works well for even distinctly di�erent datasets,
and shows that it is a large part of the network that contributes to the per-
formance gain. Figure 5.5 summarizes the results from Paper F as label maps
generated from a stained gland cell samples shows meaningful interpretation
inside a Convnet that was trained on ImageNet data, which signi�cantly di�ers
from the cell image. Some meaningful context representation on the cell images
is still present in very deep fully connected layers. The result of clustering all
cell images by the vector representation from a fully connected layers can be
seen on Figure 5.6. Cluster 1 is mainly benign samples and cluster 2 mainly
malign.
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Figure 5.5: Label maps for di�erent convolutional layers in a Convnet trained
on ImageNet. The image passed through the network is a stained
gland cell sample which is signi�cantly di�erent data than what
the network was trained on. Data is from the Warwick QU
datasets described in [SSR15, SPC+ 17].

Figure 5.6: Clustering result on image vectors from layer 14 (fully connected)
out of 16 layers. The test images are clustered with some context
preserved so the image representation in this layer is likely to be
transferable.

5.3 Conclusion

There are two challenges when interpreting Convnets with visualization tech-
niques. The �rst is to quantify model sensitivity over a set of images, as opposed
to only visualizing single image representation. Secondly, the high dimension-
ality of feature space inside a network leads to the practical issue of manually
verifying the nodes of the network. In this chapter both challenges are ad-
dressed. Occlusion maps o�er a quanti�cation of a model's sensitivity measured
by its con�dence. The technique can be adapted to �t other image modali-
ties by changing occlusion masks to statistically neutral values according to the
distribution. Further, if segmentation masks are provided we can quantify a
model's occlusion sensitivity with respect to individual context categories. High
feature dimensionality in Convnets can be reduced by considering clusters in
feature space. Clustering activations from layers in a Convnet result in a re-
duced visualization space and can be used to interpret the context by means
of the clusters' representation of input data. The proposed activation cluster-
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ing scheme is a general framework and in our case it proved useful explaining
Transfer Learning between dissimilar datasets.



Chapter 6

Discussion and Conclusion

Convnets have a strong ability to represent image context by stacked feature
representations proven by the vast amount of recent literature, experiments and
their use. However, regarding problems related to limited datasets and interpre-
tations of the models, there are still issues that need to be addressed further. In
this thesis a set of tools have been developed for coping with dataset limitations.
The tools are based on changing experimental setups, using simulated input and
output data when real data is sparse and interpreting model functionality by
visualizations. Experimentally, the contributions of this thesis concern obtain-
ing information when dealing with limited datasets. Promising solutions were
found when using simulated data for SAR ATR, a �eld where data collection is
limited by high costs. These results encourage future research to look in this
direction.

Within the domain of SAR ATR this thesis contributed with several methods
to tackle limited datasets. Paper A investigated translational invariance for
classi�cation models to show the algorithm's generalizability to an operational
scenario with higher translational variance. While translational invariance can
be an important parameter, the experiments need to be extended in order to
conclude on optimal classi�ers for SAR ATR. The largest problem is that the
SAR ATR data foundation generally is weak. Paper C showed good results by
using Transfer Learning between simulated data and the MSTAR dataset. This
proves that simulated data can play a larger role in future SAR ATR and possi-
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bly strengthen the data foundation. To account for the limitations in MSTAR
such as lack of depression angles and intra-class variation the SARSIM simu-
lated dataset was extended on these parameters. However, there were several
other parameters on which the dataset could be improved that would further
reduce the gap to operational SAR ATR data. Complex backgrounds with trees
and other vehicles would introduce more variance and challenge classi�ers in
a realistic way. Another general limitation within SAR ATR is the separation
of classi�cation/recognition from detection of objects. If we consider the large
areas of ground a SAR sensor can cover, new studies on �nding areas of interest,
segmenting land cover types and detecting objects to pass to a classi�er would
also be relevant. In Computer Vision the tasks of segmenting or detecting ob-
jects have merged with classifying objects, e.g. in Semantic Segmentation, and
Convnets fully support this concept. In SAR ATR, little data exist for testing
algorithms that e.g. both detect and classify objects in large maps, but this
could be a focus in future work and data collection campaigns.

Dense predictions of targets were performed in both Paper B and Paper E on
two di�erent tasks with good results. Paper ?? concerned predictions over all
pixels in a SAR image with categories target, shadow and background. Paper
E the a pixel-wise predictions of atmospheric temperature pro�les over infrared
spectral measurements. However, the approach of reformulating a Convnet to
work on patches in a pixel-wise manner is computationally expensive. For all
patches that partly overlaps, the Convnet performs some or more redundant
convolutions due to the overlap of the patch windows. With smaller patch sizes
the redundancy decreases hence whether the computational load is a problem
depends on the speci�c application and model design. It is not in the scope of
Paper B to include experiments on optimal patch size. For the small MSTAR
images (128x128 pixels) a patch size of 33x33 pixels is not a problem since an
image can be processed in a few seconds, but for larger SAR maps this might
become a problem. Newer architectures for dense predictions with Convnets
trade the density of convolutions in a patch for a Convnet architecture that
produces larger predictions maps in one go with signi�cantly less computations,
[YK15]. The receptive �eld in the approach of [YK15] from where information is
aggregated into a convolutional layer output can be designed to be the same as
in the patch based approach. Further, spatial resolution is kept so sharp edges
in segmentation masks are well modeled as opposed to other dense prediction
methods, e.g. [LSD15]. The Convnet architecture in [YK15] could be used for
both the segmentation task in Paper B and regression problem in Paper E if
the network output layer is adapted to the respective task.

The experiments in Paper E combined with the dimensionality reduction tech-
niques in Paper D show great potential for Convnets in retrieval of atmospheric
parameters. To further extend on the work in Paper E two main concepts would
be interesting to explore. First, as an alternative to the Minimum Noise Frac-
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tion algorithm in Paper D, the �rst layer in the Convnet architecture could as
well perform dimensionality reduction. By convolving a kernel across the spec-
tral channels in the Infrared Sounder data, dimensionality reduction could be
learned simultaneously with the regression task. The second extension would be
to include the spatial relationship between the target temperatures as they are
expected to be highly correlated with neighbors in both vertical and horizontal
direction. This could be done by exchanging the least square regression error
function that assumes target independence. Possible alternative error functions
that include information from neighboring targets could be based on Markov
Chains or Markov Random Fields.

Visualization of a Convnet's image representation o�er intuition about its func-
tionality. This is an important tool when evaluating generalizability of a model.
Occlusion maps are one way of gaining insight into the generalizability as it
provides us with a direct pixel-wise measure of model con�dence when a local
area is occluded. The occlusion map experiments on MSTAR revealed that our
model had learned to recognize a vehicle by a single strong re�ection on it. This
fact is worrying for generalizability if we suspect a similar re�ection could be
present on other vehicles given a larger set of vehicle types.

When it comes to understand the internal data representation in Convnets the
main challenges are the abstraction and dimensionality of the representation.
The label activation map presented in Paper F is a direct way of reducing
dimensionality when considering visualizations of Convnets. Further, the label
activation maps consider clusters of Gaussian mixtures on a Convnet's image
representations a way of measuring its relevance to the given data. This was
found very useful for explaining Transfer Learning between dissimilar datasets.

From the results presented in this thesis we �nd several tools and approaches
that can explore a model's generalizability when working with limited datasets.
Generally one can test whether certain problems exist by visualization and use
Transfer Learning and simulated data to tackle these. Alternatively, it might
be bene�cial to scope the experimental setup to cope with expected variances
not covered by the dataset. All these �ndings provide a foundation for building
practical solutions with Convnets for Computer Vision problems.
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Appendix A

Datasets

The datasets used in this thesis are referred to as MSTAR, SARSIM, EMISAR
and IASI. A short description and sample images are shown in this section.

A.1 MSTAR

MSTAR is a set of real SAR images of military vehicles in 30cm x 30cm reso-
lution. The subset often used for testing classi�cation algorithms contains ten
vehicle types recorded at 15°and 17°depression angles. Incidence angles of the
radar radio wave on target are characterized by depression angle and azimuth
rotation angle illustrated on Figure A.1.

The vehicles are densely sampled in azimuthal rotation with an image for each
1° - 2° depending on the object. The training set contains the ten vehicles at
17° and the test set contains the 15° samples.

Besides the classi�cation set, MSTAR contains additional images of empty back-
grounds covering large areas. Additionally, three vehicles in MSTAR have been
recorded at depression angles equal to 30°and 45°. These vehicles are a tank -
2S1, an armored patrol car - BRDM2 and an anti-aircraft vehicle - ZSU23-4.
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(a) (b)

Figure A.1: Illustration of MSTAR depression angles (a) and azimuthal rota-
tion angles (b).

(a)

(b)

Figure A.2: MSTAR images from the 10-way classi�cation subset. A SAR
image of each vehicle is shown (a) at approximately 90°azimuthal
rotation. (b) A regular image of each of the objects in MSTAR.
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Table A.1: Table of simulation parameters in the SARSIM dataset. In to-
tal the dataset contains 21 168 images. "Medium" background is
generated with a mean backscatter coe�cient of grass and road.

Parameters Instance Number
Azimuth Angles 0, 5, ..., 355 72
Depression Angles 15, 17, 25, 30, 35, 40, 45 7
Classes Tanks, Trucks, Buses, Cars,

Humwees, Bulldozers, Motorbikes 7
Models 2 pr. class 14
Background Grass, Road and Medium 3
Resolution 30cm 1

A.2 SARSIM

SARSIM is a simulated SAR ATR dataset developed by DTU Space in collabo-
ration with Terma A/S. The goal has been to extend on the information about
SAR ATR that can be obtained from MSTAR. Rather than ten speci�c vehicles
SARSIM contains seven vehicle classes and each has two instances of vehicles.
SARSIM has a 5° azimuthal sampling of objects, but includes seven di�erent de-
pression angles to study the change in object appearance with respect to these.
Further, objects have been simulated with di�erent backgrounds. An overview
of the settings can be seen in Table A.1.

A.3 EMISAR

EMISAR is a fully polarimetric SAR system developed at DTU Space, i.e.
it is capable of transmitting horizontal and vertical polarized radio waves as
well as receiving both and do every combination of transmission and receiv-
ing these. It has two radar frequencies L-band (� 2 15 � 30cm) and C-band
(� 2 3:75� 7:5cm). [CSD+ 98, MCSD91], provides the full description of the
technical system details. The dataset referred to as the EMISAR dataset in this
paper in a study of vegetation growth with measurements from the EMISAR
system. The recordings are of �elds near the danish village of Foulum which
is the location of the Danish Centre For Food and Agriculture. There are 6
di�erent types of crops marked in the images at Figure A.4, Rye, Grass, Winter
Wheat, Spring Barley, Peas and Winter Barley.
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Figure A.3: Left column: Real SAR image from MSTAR of T72 Tank. Middle
Column: SARSIM simulation of T90 Tank in 30cm pixel resolu-
tion. The rows represent 15°, 30°and 45°depression angles respec-
tively.
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(a) March. (b) April. (c) May.

(d) June. (e) July. (f ) August.

Figure A.4: Color coded polarimetric SAR images from the EMISAR Foulum
dataset. EMISAR Foulum dataset is a crop classi�cation dataset
with polarimetric SAR images of the whole growth season on
certain crop type �elds.

A.4 Infrared Atmospheric Sounding Interferom-
eter

The Infrared Atmospheric Sounding Interferometer is an instrument on board
the MetOp satellite series. It measures infrared emissions in the spectra from
3.62 - 15.5�m wavelength (2760 - 645 cm�1 ), with the intention of providing
temperature and water vapor pro�les of the atmosphere. The measurements
consist of spectra with 8461 bands and more than one million of these are
collected each day. Each orbit from IASI produces 1530 scans of 60 points
across track and approximately 14 orbits are collected each day corresponding
to two global coverages.

For Paper D and E a dataset of 13 orbits from august 2013 were collected and
structured in rectangular grids of 1530x60 pixels. These were matched with
temperature and water vapor atmospheric pro�les from 90 di�erent altitudes.
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The temperature and vapor pro�les are outputs from a weather model by The
European Centre for Medium-Range Weather Forecasts (ECMWF). Each orbit
has corresponding cloud and land fraction masks associated with it. With these,
prediction errors can be analyzed according to e.g. "cloud free" versus "cloudy"
predictions.



Appendix B

Occlusion Maps

Provided in this appendix are occlusion maps according to the description in
Section 5.1 from SAR images in the MSTAR dataset. There are two occlusion
maps per vehicle in the MSTAR dataset. The maps support the analysis in
Section 5.1, e.g. there seems to be no vehicles where the model is sensitive to
features in the background of the image.

B.1 2s1 Tank
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B.2 BMP2 Tank

B.3 BRDM2 Patrol Car
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B.4 BTR60 Armored Personnel Carrier

B.5 BTR70 Armored Personnel Carrier
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B.6 D7 Bulldozer

B.7 T62 Tank
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B.8 T72 Tank

B.9 ZIL131 Truck
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B.10 ZSU23-4 Anti Aircraft Vehicle
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Publications

Paper A - Training Convolutional Neural Networks
for Translational Invariance on SAR ATR











68 Publications

Paper B - Convolutional neural networks for SAR
image segmentation
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Paper C - Improving SAR Automatic Target Recog-
nition Models with Transfer Learning from Simu-
lated Data
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Paper D - Spatial noise-aware temperature retrieval
from infrared sounder data
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Paper E - Statistical Retrieval of Atmospheric Pro-
�les with Deep Convolutional Neural Networks
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Paper F - Compressed Feature Visualizations in
Convolutional Neural Networks
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