Initiative Towards Non-Precious Metal Polymer Fuel Cells (NonPrecious)

Jensen, Jens Oluf; Shypunov, Illia; Cleemann, Lars Nilausen; Li, Qingfeng; Hansen, Heine Anton; Vegge, Tejs; Holst-Olesen, Kaspar; Zana, Alessandro; Arenz, Matthias; Hjuler, Hans Aage; Steenberg, Thomas; Juul Larsen, Mikkel; Sun, Shuhui; Dodelet, Jean-Pol; Shen, Peikang

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

INITIATIVE TOWARDS NON-PRECIOUS METAL POLYMER FUEL CELLS (NonPrecious)

Jens Oluf JENSEN¹, Illia SHYPUNOV, Lars Nilausen CLEEMANN¹, Qingfeng LI¹, Mateusz REDA¹, Heine Anton HANSEN¹ Tejs VEGGE¹,
Kaspar HOLST-OLESEN², Alessandro ZANA³, Matthias ARENZ³,
, Hans Aage HJULER⁴, Thomas STEENBERG⁴, Mikkel Juul LARSEN⁵,
Shuhui SUN⁶, Jean-Pol DODELET⁶, Peikang SHEN⁷

¹Department of Energy Conversion and Storage, Technical University of Denmark, Kemitorvet 207, DK-2800 Kgs. Lyngby, Denmark, jojen@dtu.dk
²University of Copenhagen, Nanoscience Center, Department of Chemistry, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
³University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.
⁴Danish Power Systems, Egeskovevej 6C, DK-3490 Kvistgård, Denmark
⁵EWII Fuel Cells A/S, Emil Neckelmanns Vej 15 A&B, DK-5220 Odense SØ, Denmark
⁶INRS-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel Boulet, Varennes, Québec, Canada J3X 1S2
⁷Collaborative Innovation Center of Sustainable Energy Materials, Guangxi University, Nanning 530004, P. R. China

The project, NonPrecious, is devoted to developing fuel cell catalysts for PEM fuel cells (i.e. to work in an acidic environment) without the use of platinum group metals. This has been a dream ever since the PEM fuel cell was developed in the 1960’s. It is not an easy task since platinum group metals combine high chemical stability with a binding strength of the reactants in the right range. Other metals are either instable in acid or inactive. The most successful class of alternative catalyst materials for oxygen reduction in acidic medium is molecular-like iron-nitrogen complexes embedded in aromatic carbon structures. High activity, approaching that of platinum, have been reported, but there is still a long way to go in terms of activity as well as stability. The project was initiated based on results at DTU Energy on self-organizing particles synthesized in a high-pressure autoclave from simple precursors¹. Experienced groups from INRS in Canada and Guangxi University in China are partners in the project. Selected findings with oxygen reduction catalysts synthesized in the project will be presented.