Phase estimation for global defocus correction in optical coherence tomography

2nd CCOCT in Canterbury

Mikkel Jensen¹,* , Niels Israelsen¹, Adrian Podoleanu², Ole Bang¹,³

¹ Technical University of Denmark, Anker Engelunds vej 1, 2800 Kongens Lyngby, Denmark,
² University of Kent, CT2 7NH, Canterbury, England,
³ NKT Photonics, Blokken 84, 3460 Birkerød, Denmark

* mikkje@fotonik.dtu.dk

September 8, 2017
Optical coherence tomography
 - The need for defocus correction in OCT

Refocusing
 - Hardware corrections
 - Numerical phase corrections

2-D Phase estimation
 - Direct fitting method
 - Iterative method
 - Sub-aperture method

Conclusion
Optical coherence tomography (SD-OCT)

- In-depth imaging using white light interferometry

![Diagram of SD-OCT setup]

- Broadband source
- Beam splitter
- Reference mirror
- Sample
- Spectrometer
Optical coherence tomography (SD-OCT)

- **In-depth imaging using white light interferometry**

![Diagram of SD-OCT](image-url)

- Broadband source
- Beam splitter
- Reference mirror
- Spectrometer

Mikkel Jensen (DTU Fotonik)

September 8, 2017
Refocusing - How is it done?

- Multiple probe beams
 - Increases system complexity and processing time

Equation:

$$I \propto |E_R(k) + E_S(x,y,k)|^2 = |E_R|^2 + |E_S|^2 + E_S E^* R + E^* S E R$$

Numerical schemes:
- Numerical wavefront correction

For defocus,
- ϕ_{NL} is parabolic

Estimation of ϕ_{NL}
- Least squares / unifitting
- Iterative methods
 - Sub-aperture method (mimics wavefront sensor)

Mikkel Jensen (DTU Fotonik)

2-D phase estimation for defocus correction in OCT

September 8, 2017
Refocusing - How is it done?

- Multiple probe beams
 - Increases system complexity and processing time

![Diagram with components: Broadband source, Beam splitter, Reference mirror, Spectrometer, white text, and an image of an OCT scan with green and red lines.]

Mathematical expression:
\[I \propto |E_R(k) + E_S(x,y,k)|^2 = |E_R|^2 + |E_S|^2 + E_S^*E_R + E_R^*E_S \]
Refocusing - How is it done?

- Multiple probe beams
 - Increases system complexity and processing time

![Diagram of Refocusing setup]

- Broadband source
- Beam splitter
- Reference mirror
- Spectrometer

\[I \propto |E_R(k) + E_S(x,y,k)|^2 = |E_R|^2 + |E_S|^2 + E_S E^* R + E^* S E R \]

Numerical schemes
- Numerical wavefront correction

For defocus, \(\phi_{NL} \) is parabolic

Estimation of \(\phi_{NL} \)
- Least squares fitting
- Iterative methods
 - Sub-aperture method (mimics wavefront sensor)

Mikkel Jensen (DTU Fotonik)
Refocusing - How is it done?

- Multiple probe beams
 - Increases system complexity and processing time

![Diagram](image_url)

- Broadband source
- Beam splitter
- Reference mirror
- Spectrometer

Interferometry

\[I \propto |E_R(k) + E_S(x,y,k)|^2 = |E_R|^2 + |E_S|^2 + E_S^*E_R + E_R^*E_S \]

Numerical schemes

- Numerical wavefront correction
- For defocus, \(\phi_{NL} \) is parabolic

Estimation of \(\phi_{NL} \)

- Least squares/fitting
- Iterative methods
- Sub-aperture method (mimicks wavefront sensor)

Mikkel Jensen (DTU Fotonik)

2-D phase estimation for defocus correction in OCT

September 8, 2017
Refocusing - How is it done?

- Multiple probe beams
 - Increases system complexity and processing time
- Interferometry
 \[I \propto |E_R(k) + E_S(x, y, k)|^2 = |E_R|^2 + |E_S|^2 + E_S E_R^* + E_R^* E_S \]

Conv OCT

Mirror terms

\[z \]
Refocusing - How is it done?

- Multiple probe beams
 - Increases system complexity and processing time
- Interferometry
 - \[I \propto |E_R(k) + E_S(x, y, k)|^2 = |E_R|^2 + |E_S|^2 + E_S E_R^* + E_R^* E_S \]
Refocusing - How is it done?

- Multiple probe beams
 - Increases system complexity and processing time

- Interferometry
 - \(I \propto |E_R(k) + E_S(x, y, k)|^2 = |E_R|^2 + |E_S|^2 + E_S E_R^* + E_R^* E_S \)
Refocusing - How is it done?

- Multiple probe beams
 - Increases system complexity and processing time
- Interferometry
 - $I \propto |E_R(k) + E_S(x, y, k)|^2 = |E_R|^2 + |E_S|^2 + E_S E_R^* + E_R^* E_S$
Refocusing - How is it done?

- Multiple probe beams
 - Increases system complexity and processing time

- Interferometry
 - \(I \propto |E_R(k) + E_S(x, y, k)|^2 = |E_R|^2 + |E_S|^2 + E_S E_R^* + E_R^* E_S \)

\[\text{Conv OCT} \quad \text{Mirror terms} \]

\[z \]
Refocusing - How is it done?

- Multiple probe beams
 - Increases system complexity and processing time

- Interferometry
 - \[I \propto |E_R(k) + E_S(x, y, k)|^2 = |E_R|^2 + |E_S|^2 + E_S E_R^* + E_R^* E_S \]

- Numerical schemes
 - Numerical wavefront correction
 - \[\tilde{I}_C(k_x, k_y, z_0) = \tilde{I}(k_x, k_y, z_0) \exp(-i\phi_{NL}(k_x, k_y)) \]
Refocusing - How is it done?

- Multiple probe beams
 - Increases system complexity and processing time

- Interferometry
 \[I \propto |E_R(k) + E_S(x, y, k)|^2 = |E_R|^2 + |E_S|^2 + E_S E_R^* + E_R^* E_S \]

- Numerical schemes
 - Numerical wavefront correction
 \[\tilde{I}_C(k_x, k_y, z_0) = \tilde{I}(k_x, k_y, z_0) \exp(-i\phi_{NL}(k_x, k_y)) \]
 - For defocus, \(\phi_{NL} \) is parabolic
Multiple probe beams

- Increases system complexity and processing time

Interferometry

\[I \propto |E_R(k) + E_S(x, y, k)|^2 = |E_R|^2 + |E_S|^2 + E_S E_R^* + E_R^* E_S \]

Numerical schemes

- Numerical wavefront correction
 \[\tilde{I}_C(k_x, k_y, z_0) = \tilde{I}(k_x, k_y, z_0) \exp(-i\phi_{NL}(k_x, k_y)) \]

- For defocus, \(\phi_{NL} \) is parabolic
Refocusing - How is it done?

- Multiple probe beams
 - Increases system complexity and processing time

- Interferometry
 \[I \propto |E_R(k) + E_S(x, y, k)|^2 = |E_R|^2 + |E_S|^2 + E_S E_R^* + E_R^* E_S \]

- Numerical schemes
 - Numerical wavefront correction
 \[\tilde{I}_C(k_x, k_y, z_0) = \tilde{I}(k_x, k_y, z_0) \exp(-i\phi_{NL}(k_x, k_y)) \]
 - For defocus, \(\phi_{NL} \) is parabolic

- Estimation of \(\phi_{NL} \)
 - Least squares fitting
 - Iterative methods
 - Sub-aperture method (mimicks wavefront sensor)
Refocusing - Phase estimation

- Least squares fitting
 - 2-D unwrapping is an over-bound problem
 \[-\pi < \phi < \pi\]

\[k_x \]
\[k_y \]
Refocusing - Phase estimation

- Least squares fitting
 - 2-D unwrapping is an over-bound problem
 - LS solution
Least squares fitting
- 2-D unwrapping is an over-bound problem
- LS solution
- Fit
Refocusing - Phase estimation

- Least squares fitting
 - 2-D unwrapping is an over-bound problem
 - LS solution
 - Fit
- Iterative method
 - Variance used as sharpness metric
Refocusing - Phase estimation

- Least squares fitting
 - 2-D unwrapping is an over-bound problem
 - LS solution
 - Fit
- Iterative method
 - Variance used as sharpness metric
- Sub-aperture method [1]

Refocusing - Cucumber slice
Refocusing - A single *en-face* image

- *En-face* number 33: ~ 330 microns above focus
Refocusing - A single *en-face* image

- *En-face* number 33: ~ 330 microns above focus
Refocusing - A single *en-face* image

- *En-face* number 33: ~ 330 microns above focus

Fitting

- $\sim 54\,\mu m$
- $16.2\,\mu m$
- $10.8\,\mu m$
- $6.2\,\mu m$
Refocusing - A single *en-face* image

- *En-face* number 33: ~ 330 microns above focus

![Image of en-face image with measurements](image1.png)

Iteration

![Image of iteration with measurements](image2.png)
Refocusing - A single *en-face* image

- *En-face* number 33: \(\sim 330 \) microns above focus

![En-face image](image1.png)

Sub-aperture

![Sub-aperture image](image2.png)
Refocusing - A volume

- Defocus unaffected by sample
- $\phi_{NL} \propto z - z_F$
- Extrapolation from a single *en-face*
Refocusing - A volume

- Defocus unaffected by sample
- $\phi_{NL} \propto z - z_F$
- Extrapolation from a single en-face

390 microns above focus
Refocusing - A volume

- Defocus unaffected by sample
- $\phi_{NL} \propto z - z_F$
- Extrapolation from a single *en-face*

234 microns above focus
Refocusing - A volume

- Defocus unaffected by sample
- $\phi_{NL} \propto z - z_F$
- Extrapolation from a single *en-face*

78 microns above focus
Refocusing - A volume

- Defocus unaffected by sample
- $\phi_{NL} \propto z - z_F$
- Extrapolation from a single en-face

78 microns below focus
Refocusing - A volume

- Defocus unaffected by sample
- $\phi_{NL} \propto z - z_F$
- Extrapolation from a single en-face

234 microns below focus
Refocusing - A different volume

- A bell pepper volume corrected with the previous phase
Refocusing - A different volume

- A bell pepper volume corrected with the previous phase

\[\sim 300 \text{ microns above focus} \]
Conclusion

- OCT suffers from defocus
Conclusion

- OCT suffers from defocus
- Complicated hardware solutions
 - Multiple probe beams
 - Modifying focus of a single beam

Interferometric nature of OCT allows numerical phase corrections. All three methods give similar improvements. DOF increases from 2–9 microns – factor of ∼2 improvement. Limited by top of sample and multiple scattering.

Mikkel Jensen (DTU Fotonik) 2-D phase estimation for defocus correction in OCT

September 8, 2017
Conclusion

- OCT suffers from defocus
- Complicated hardware solutions
 - Multiple probe beams
 - Modifying focus of a single beam
- Interferometric nature of OCT allows numerical phase corrections
 - All three methods give similar improvements
 - Diffraction limited
Conclusion

- OCT suffers from defocus
- Complicated hardware solutions
 - Multiple probe beams
 - Modifying focus of a single beam
- Interferometric nature of OCT allows numerical phase corrections
 - All three methods give similar improvements
 - Diffraction limited
- Phase extrapolated to correct entire volumes
 - Phase estimation is a one-time job
 - Applied continually
Conclusion

- OCT suffers from defocus

- Complicated hardware solutions
 - Multiple probe beams
 - Modifying focus of a single beam

- Interferometric nature of OCT allows numerical phase corrections
 - All three methods give similar improvements
 - Diffraction limited

- Phase extrapolated to correct entire volumes
 - Phase estimation is a one-time job
 - Applied continually

- DOF > 550 microns
 - Up from 290 microns – factor of ~2 improvement
 - Limited by top of sample and multiple scattering
Acknowledgements

- ShapeOCT grant 4107-00011A
- AOG @ Kent

Thank you!

Any questions?