Biological systems for simultaneous methanation of CO2 and H2 by anaerobic microorganisms

Kougias, Panagiotis G.; Treu, Laura; Angelidaki, Irini

Published in:
Book of Abstracts, Sustain 2017

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Biological systems for simultaneous methanation of CO2 and H2 by anaerobic microorganisms

Panagiotis G. Kougias*, Laura Treu, Irini Angelidakis

Department of Environmental Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark

*Corresponding author email: panak@env.dtu.dk

Biogas upgrading is an emerging technology for fuel production that can be used in transportation sector or substitute natural gas. Nowadays, the biological route for biogas upgrading via hydrogen assisted methanogenesis is gaining increased attention. The success of this process is strongly dependent on the applied environmental parameters (e.g. hydrogen partial pressure) and their subsequent influence on the microbial consortium (e.g. efficiency of syntrophic interactions). This abstract provides a collective synopsis of our previous studies on development of systems for biological upgrading of biogas with H2. Two different concepts (in-situ and ex-situ biogas upgrading) were developed. For in-situ biogas upgrading, hydrogen was directly injected into the primary or secondary biogas reactor, and hydrogen could be converted to CH4 together with CO2 by autochthonous hydrogenotrophic methanogens. It was shown that after the H2 addition, the CH4 rate increased by 45%, resulting in an average CH4 content of approximately 85%, with a maximum of 94%. The increase of the pH to 8.5, due to the CO2 conversion, was not an inhibitory factor, demonstrating the adaptation of microorganisms to these pH levels. The profiles of the microbial communities prior and after the H2 addition showed distinct differences. Changes in the archaeal community and more specifically increase in the relative abundance of Methanobrevibacter sp. and Methanoculleus sp. indicated that the methanogenic pathway was clearly shifted from acetoclastic to hydrogenotrophic. For ex-situ biogas upgrading, hydrogen and biogas were together injected into an anaerobic reactor containing enriched cultures that can convert H2 and CO2 to CH4. Results demonstrated that the reactors were able to convert efficiently the injected H2 and CO2 to methane. More specifically, the final output content of CH4 reached 96% at a hydrogen loading rate of 3.6 L/L_reactor·d H2. During stable operational conditions, samples were collected from all reactors for microbial analysis based on high throughput 16S rRNA amplicon sequencing. The massive increase of hydrogenotrophic methanogens, such as Methanothermobacter thermotrophicus, and syntrophic bacteria demonstrates the selection-effect of H2 on community composition.