Phase Equilibrium Measurements and Modeling of 1-Propanethiol+1-Butanethiol + CH4 in Methane Ternary System at 303, 336, and 368 K and Pressure Up to 9 MPa

Awan, Javeed A.; Coquelet, Christophe; Tsivintzelis, Ioannis; Kontogeorgis, Georgios

Published in:
Journal of Chemical and Engineering Data

Link to article, DOI:
10.1021/acs.jced.5b00134

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Phase Equilibrium Measurements and Modeling of 1-propanethiol + 1-butanethiol + CH4 in Methane + Water Ternary Systems at 303, 336, and 365 K and Pressure Up to 9 MPa
Javeed A. Awan, Christophe Coquelet, Ioannis Tsivintzelis, Georgios M. Kontogeorgis

To cite this version:
Javeed A. Awan, Christophe Coquelet, Ioannis Tsivintzelis, Georgios M. Kontogeorgis. Phase Equilibrium Measurements and Modeling of 1-propanethiol + 1-butanethiol + CH4 in Methane + Water Ternary Systems at 303, 336, and 365 K and Pressure Up to 9 MPa. Journal of Chemical and Engineering Data, American Chemical Society, 2016, 61, pp.41-44. <10.1021/acs.jced.5b00134>. <hal-01258498>

HAL Id: hal-01258498
https://hal-mines-paristech.archives-ouvertes.fr/hal-01258498
Submitted on 19 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Phase Equilibrium Measurements and Modeling of 1-propanethiol + 1-butanethiol + CH₄ in Methane + Water Ternary Systems at 303, 336, and 365 K and Pressure Up to 9 MPa

Javeed A. Awan¹ c, Christophe Coquelet b, Ioannis Tsivintzelis d, Georgios Kontogeorgis a*²

¹ Center for Energy Resources Engineering, Department of Chemical and Biochemical Engineering, Technical university of Denmark, Building 229, DK-2800 Kgs. Lyngby, Denmark. ² CTP—Center for the Thermodynamics of Processes, MINES Paris Tech, PSL Research University, Rue Saint Honore, 77305 Fontainebleau, France, ³ Institute of Chemical Engineering and Technology, Faculty of Engineering and Technology University of the Punjab, Lahore, Pakistan. ⁴ Department of Chemical Engineering, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece.

Abstract

New vapor-liquid equilibrium (VLE) data for 1-propanethiol + 1-butanethiol + CH₄ ternary system is reported. Measurements were performed at three different temperatures (303, 336 and 368 K), while the pressure was ranged from 1 to 9 MPa. The total system pressure was maintained by CH₄. The inlet mole fraction of 1-propanethiol \((x = 5.43 \times 10^{-1}) \) and 1n-butanethiol \((x = 4.56 \times 10^{-1}) \) in the liquid phase were same in all experiments. A static analytic method was used for performing phase equilibrium measurements. The new VLE data have been modeled successfully with Cubic-Plus-Association (CPA) EoS.

keywords: static analytic method, phase equilibria, CPA EoS, thiols (mercaptan) removal

*: Corresponding author, Email: gk@kt.dtu.dk, (Professor Georgios Kontogeorgis), Phone: +45 45252859, Fax: +45 45882258
1. Introduction

The knowledge of thermodynamic properties of mixtures of sulfur compounds with hydrocarbons is important in the petroleum as well as in the chemical industry. An understanding of the thermo physical properties and equilibrium data of such mixtures facilitates the rationale design of processes for the removal sulfur compounds from petroleum streams and also for the purification of sulfur compounds in order to be used as chemical intermediates. 1-propanethiol (n-propylmercaptan) and 1-butanethiol (n-butylmercaptan) are common organic sulfur components present in natural gas, synthesis gas and various refinery process streams. Their typical presence in the host gas stream can range from several parts per million to 5 percent by volume. The environmental protection forces the petrochemical industry to decrease the sulfur content in the various petroleum fluids. Furthermore, any thiols/mercaptans (RSH) not absorbed from the sour gas through the amine purification units, complicate the process scheme for downstream liquid treatment units. Consequently, the equilibrium data and thermo physical properties of thiols with methane, ethane, propane and other hydrocarbons in the presence and absence of water is important to both process optimization and product specifications.

This work is the continuation of our studies on the VLE and VLLE measurements of the systems containing CH₄, water and thiols. Herein we measure new VLE data for ternary mixture 1-propanethiol (C₃H₇SH) + 1-butanethiol (C₄H₉SH) + methane (CH₄) at three temperatures (303, 336, and 368 K) and pressures up to 9 MPa. The Cubic-Plus-Association (CPA) equation of state has been used to predict the new VLE ternary data with no adjustable parameters.

2. Experimental section

The experimental work has been carried out at Mines ParisTech, France, where a “static-analytic” technique based apparatus consisting of an equilibrium cell equipped with one moveable Rapid Online Sampler Injector (ROLSI™) was used. The detail of the experimental setup has been discussed in our previous manuscript. The equipment is the same used by Zehioua et al. and the procedure is identical to Coquelet et al. The liquid and vapor samples are analyzed using a gas chromatograph (Varian model CP-3800), equipped with a thermal conductivity detector (TCD), and a flame ionization detector (FID). CAS numbers, purities, and suppliers of materials are provided in table 1. no further purification of chemicals has made.
In the absence of air, 1-propanethiol (15 ml) was added into the equilibrium cell (32 cm³) followed by equal volumetric quantity of 1-butanethiol (10 ml). Then CH₄ was added from the top of equilibrium to reach the desired pressure. The desired temperature was obtained by placing the cell into a thermo-regulated oil bath. The vapor and the organic (liquid) samples from equilibrium cell were directly introduced to the gas chromatograph once equilibrium was established. The samples are introduced through an isothermally heated transfer line. Two 100 Ω platinum probes (Pt100) were used for temperature measurements which are inserted inside thermo-wells drilled into the body of the equilibrium cell at two different levels and are connected to an HP data acquisition unit. They were periodically calibrated against a 25 Ω reference platinum resistance thermometer (TINSLEY precision instruments, France). The expended standard uncertainty (0.95 level of confidence, k=2) in temperature measurements was estimated to be U(T)=0.04 K.

Pressure was measured by means of a Druck™ pressure transducer (0.1 to 10 MPa), which was maintained at 353.15 K. The pressure transducer was calibrated against a dead-weight pressure balance (Desgranges & Huot 5202S, CP 0.3-40 MPa, Aubervilliers, France). The expended standard uncertainty (0.95 level of confidence, k=2) in pressure measurements was estimated to be U(P)=0.003 MPa. The gas chromatograph detectors were calibrated using chromatographic syringes with the relative standard uncertainties in mole numbers of 2 % in the TCD and 1.5 % in the FID, thus the expended uncertainty (0.95 level of confidence, k=2) in mol fraction is U_{\text{max}}(x \text{ or } y, k=2)=0.006

The peaks of the individual components generated by gas chromatograph in liquid phase [CH₄ (FID), C₃H₇SH (TCD), C₄H₉SH (TCD)] and in gas phase [CH₄ (TCD), C₃H₇SH (FID), C₄H₉SH (FID)] were recorded using one RS-232 interface. These peaks are generated at specific retention time. The areas under the peaks correspond to the number of moles of the individual components, which come from the corresponding calibration. All the experimental data point has been analyzed around 10 times, till we have consistent values. The standard deviation (σ^A) on each experimental data point was calculated⁷ and presented in Table 2.

3. Modeling section

The experimental data were modeled using the CPA EoS, which in terms of the pressure is given as¹⁰,¹¹:

\[
P = \frac{RT}{V_m - b} - \frac{\alpha(T)}{V_m(V_m + b)} - \frac{1}{2}\frac{RT}{V_m}\left(1 + \rho \frac{\partial \ln g}{\partial \rho}\right)\sum_i x_i \sum_j (1 - X_j) \tag{1}
\]

More details about the CPA EoS can be found in the literature¹⁰,¹¹. The CPA EoS for thiols (mercaptan containing systems) has been described in our previous studies⁵,⁶,⁷. All fluids of this work (1-propanethiol (C₃H₇SH), 1-butanethiol (C₄H₉SH) and methane were modeled as non-self-associating fluids. The CPA EoS
pure component parameters \((b/\text{L.mol}^{−1}, \Gamma= a/(R \, b)/K \text{ and } c_1)\) for \(\text{C}_3\text{H}_7\text{SH}\), \(\text{C}_4\text{H}_9\text{SH}\), \(\text{CH}_4\) and the binary Interaction parameters for \(\text{C}_3\text{H}_7\text{SH}-\text{CH}_4\) \((k_{ij}=0.38)\) and \(\text{C}_4\text{H}_9\text{SH}-\text{CH}_4\) \((k_{ij}=0.38)\) were adopted from literature. The binary interaction parameter between \(\text{C}_3\text{H}_7\text{SH}-\text{C}_4\text{H}_9\text{SH}\) is fixed equal to zero \((k_{ij}=0.0)\), based on an assumption that such molecules have very similar structure. Having all pure and binary parameters from the corresponding binary systems the CPA EoS is used to predict the VLE of \(\text{1-propanethiol (C}_3\text{H}_7\text{SH)} + \text{1-butanethiol (C}_4\text{H}_9\text{SH)} + \text{methane (CH}_4\). No adjustable parameter is optimized to the ternary experimental data.

4. Results and discussion

Vapor-liquid equilibrium (VLE) measurements for the \(\text{1-propanethiol + 1-butanethiol + CH}_4\) ternary system were performed at three different temperatures (303, 335 and 368 K) and pressures up to 9 MPa. To the best of author knowledge no other experimental phase equilibrium data for such ternary system exists in the open literature and, consequently, a comparison of the new experimental data, presented in Table 2, is not possible. As shown in figure 1, the solubility of \(\text{methane (CH}_4\) in the \(\text{1-propanethiol - 1-butanethiol rich liquid phase increases with the increase of total system pressure and temperature . The gas phase content of 1-propanethiol (C}_3\text{H}_7\text{SH) and 1-butanethiol (C}_4\text{H}_9\text{SH) decreases slightly with increase of pressure and increases significantly with the increase of temperature as shown in figure 2. It can be also observed that the gas phase content of 1-propanethiol (C}_3\text{H}_7\text{SH) is always superior to 1-butanethiol (C}_4\text{H}_9\text{SH) at the same temperature and pressure, as it is expected.}\)

The CPA EoS predictions for the vapor-liquid equilibrium of \(\text{1-propanethiol (C}_3\text{H}_7\text{SH) + 1-butanethiol (C}_4\text{H}_9\text{SH) + methane (CH}_4\) ternary system at 303, 335 and 368 K and up to 9 MPa are shown in figures 1, 2 and 3 respectively. It is observed that deviation between the experimental data and the CPA predictions is sometimes higher than 20 %. The CPA results are pure predictions as no parameters were adjusted to the experimental data. From this point of view, the CPA rather satisfactorily predicts the vapor-liquid regions for \(\text{1-propanethiol + 1-butanethiol + CH}_4\) ternary system.

5. Conclusion

New vapor-liquid equilibrium (VLE) data for the \(\text{1-propanethiol + 1-butanethiol + CH}_4\) has been obtained at three temperatures (303, 335, and 368 K) and pressures up to 9 MPa. A “static-analytic” method was successfully used for performing all the measurements. The CPA EoS has been applied for the representation of ternary systems containing \(\text{1-propanethiol and 1-butanethiol. The modeling results are considered satisfactory as they are just predictions without the adjustment of any parameter to the ternary experimental data.}
Acknowledgment

we acknowledge DET FRIE FORSKNINGSRAD Danmark for the independent research grant no.09-066450 to Dr. Javeed A. Awan at Center for Energy Resources Engineering, DTU Chemical Engineering. We appreciate discussions with Prof. Jean-Noel Jaubert (ENSIC, France) and Prof. Dominique Richon (Mines ParisTech, France). The authors wish also to thank CHIGP consortium companies i.e Statoil *(Norway), Gassco (Norway), BP (UK, USA), TOTAL (France), DONG Energy and Mærsk Oil & Gas (Denmark) for supporting the CPA-EoS part of this work as part of the project.

Literature Cited

(7) Awan, J. A.; Kontogeorgis, G. M.; Tsivintzelis, I.; Coquelet, C. Vapor–Liquid–Liquid Equilibrium Measurements and Modeling of Ethanethiol + Methane + Water,

Table 1. CAS numbers, purities, and suppliers of materials.

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Source</th>
<th>Mole fraction purity*</th>
<th>CAS No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Propanethiol (C₃H₇SH)</td>
<td>ACROS</td>
<td>≥ 0.99</td>
<td>107-03-9</td>
</tr>
<tr>
<td>1-Butanethiol (C₄H₉SH)</td>
<td>ACROS</td>
<td>≥ 0.99</td>
<td>109-79-5</td>
</tr>
<tr>
<td>Methane (CH₄)</td>
<td>Messer</td>
<td>0.998</td>
<td>74-82-8</td>
</tr>
</tbody>
</table>

* Information provided by suppliers.
Table 2. Experimental Vapor-liquid Equilibrium Data for the 1-propanethiol (C_3H_7SH) + 1-
butanethiol (C_4H_9SH) + methane (CH_4) ternary mixture

<table>
<thead>
<tr>
<th>T/K</th>
<th>P/MPa</th>
<th>y_{CH4}</th>
<th>y_{C3H7SH}</th>
<th>y_{C4H9SH}</th>
<th>T/K</th>
<th>P/MPa</th>
<th>x_{CH4}</th>
<th>x_{C3H7SH}</th>
<th>x_{C4H9SH}</th>
</tr>
</thead>
<tbody>
<tr>
<td>302.92</td>
<td>0.652</td>
<td>0.891</td>
<td>0.059</td>
<td>0.050</td>
<td>302.98</td>
<td>0.653</td>
<td>0.015</td>
<td>0.432</td>
<td>0.553</td>
</tr>
<tr>
<td>303.00</td>
<td>1.715</td>
<td>0.968</td>
<td>0.019</td>
<td>0.013</td>
<td>303.06</td>
<td>2.507</td>
<td>0.066</td>
<td>0.430</td>
<td>0.504</td>
</tr>
<tr>
<td>303.06</td>
<td>2.505</td>
<td>0.975</td>
<td>0.014</td>
<td>0.010</td>
<td>303.08</td>
<td>2.507</td>
<td>0.066</td>
<td>0.430</td>
<td>0.504</td>
</tr>
<tr>
<td>303.18</td>
<td>3.687</td>
<td>0.989</td>
<td>0.007</td>
<td>0.004</td>
<td>303.18</td>
<td>3.689</td>
<td>0.101</td>
<td>0.429</td>
<td>0.470</td>
</tr>
<tr>
<td>303.19</td>
<td>4.784</td>
<td>0.989</td>
<td>0.007</td>
<td>0.005</td>
<td>303.19</td>
<td>4.785</td>
<td>0.132</td>
<td>0.419</td>
<td>0.449</td>
</tr>
<tr>
<td>303.09</td>
<td>6.478</td>
<td>0.988</td>
<td>0.007</td>
<td>0.005</td>
<td>303.09</td>
<td>6.481</td>
<td>0.173</td>
<td>0.398</td>
<td>0.429</td>
</tr>
<tr>
<td>303.02</td>
<td>7.916</td>
<td>0.989</td>
<td>0.007</td>
<td>0.005</td>
<td>303.08</td>
<td>7.928</td>
<td>0.200</td>
<td>0.384</td>
<td>0.416</td>
</tr>
<tr>
<td>336.14</td>
<td>1.486</td>
<td>0.892</td>
<td>0.062</td>
<td>0.046</td>
<td>336.11</td>
<td>1.491</td>
<td>0.035</td>
<td>0.435</td>
<td>0.531</td>
</tr>
<tr>
<td>336.16</td>
<td>2.550</td>
<td>0.931</td>
<td>0.041</td>
<td>0.028</td>
<td>336.05</td>
<td>2.554</td>
<td>0.064</td>
<td>0.422</td>
<td>0.514</td>
</tr>
<tr>
<td>336.15</td>
<td>4.371</td>
<td>0.967</td>
<td>0.018</td>
<td>0.015</td>
<td>336.15</td>
<td>4.377</td>
<td>0.114</td>
<td>0.413</td>
<td>0.474</td>
</tr>
<tr>
<td>336.11</td>
<td>5.320</td>
<td>0.969</td>
<td>0.017</td>
<td>0.013</td>
<td>336.11</td>
<td>5.325</td>
<td>0.137</td>
<td>0.396</td>
<td>0.467</td>
</tr>
<tr>
<td>335.99</td>
<td>6.533</td>
<td>0.969</td>
<td>0.017</td>
<td>0.013</td>
<td>335.97</td>
<td>6.538</td>
<td>0.165</td>
<td>0.389</td>
<td>0.445</td>
</tr>
<tr>
<td>335.98</td>
<td>8.100</td>
<td>0.971</td>
<td>0.016</td>
<td>0.013</td>
<td>335.97</td>
<td>8.108</td>
<td>0.201</td>
<td>0.369</td>
<td>0.430</td>
</tr>
<tr>
<td>335.76</td>
<td>9.078</td>
<td>0.970</td>
<td>0.016</td>
<td>0.014</td>
<td>336.02</td>
<td>9.088</td>
<td>0.223</td>
<td>0.361</td>
<td>0.415</td>
</tr>
<tr>
<td>367.59</td>
<td>1.541</td>
<td>0.902</td>
<td>0.051</td>
<td>0.046</td>
<td>367.84</td>
<td>1.562</td>
<td>0.033</td>
<td>0.393</td>
<td>0.574</td>
</tr>
<tr>
<td>368.78</td>
<td>2.145</td>
<td>0.918</td>
<td>0.046</td>
<td>0.036</td>
<td>368.91</td>
<td>2.195</td>
<td>0.050</td>
<td>0.389</td>
<td>0.561</td>
</tr>
<tr>
<td>367.89</td>
<td>3.398</td>
<td>0.934</td>
<td>0.038</td>
<td>0.028</td>
<td>367.94</td>
<td>3.405</td>
<td>0.081</td>
<td>0.379</td>
<td>0.540</td>
</tr>
<tr>
<td>366.45</td>
<td>4.325</td>
<td>0.944</td>
<td>0.032</td>
<td>0.024</td>
<td>366.78</td>
<td>4.396</td>
<td>0.102</td>
<td>0.371</td>
<td>0.527</td>
</tr>
<tr>
<td>368.16</td>
<td>5.216</td>
<td>0.948</td>
<td>0.029</td>
<td>0.023</td>
<td>368.36</td>
<td>5.309</td>
<td>0.128</td>
<td>0.367</td>
<td>0.505</td>
</tr>
<tr>
<td>368.10</td>
<td>6.454</td>
<td>0.953</td>
<td>0.027</td>
<td>0.020</td>
<td>368.54</td>
<td>6.480</td>
<td>0.152</td>
<td>0.361</td>
<td>0.487</td>
</tr>
<tr>
<td>368.53</td>
<td>7.560</td>
<td>0.953</td>
<td>0.027</td>
<td>0.020</td>
<td>368.56</td>
<td>7.565</td>
<td>0.175</td>
<td>0.347</td>
<td>0.478</td>
</tr>
</tbody>
</table>

The expended standard uncertainties with 0.95 level of confidence (k=2) are $U(T)= 0.04$, $U(P)=0.003$, $U(x$ or $y)=0.009$; where y stands for mole fraction in vapor phase and x stands for mole fractions in organic phase.
Figure 1. The solubility of CH$_4$ in the liquid 1-propanethiol (C$_3$H$_7$SH) + 1-butanol (C$_4$H$_9$OH) rich phase at 303 K; (□), 335 K; (○), 365 K; (Δ). Solid lines: CPA EoS Predictions, error band ± 5%.
Figure 2. Mole fraction of 1-propanethiol ($\text{C}_3\text{H}_7\text{SH}$) and 1-butaneliol ($\text{C}_4\text{H}_9\text{SH}$) in the vapor phase. Vapor phase mole fraction of 1-propanethiol at 303 K; (\Box), 335 K; (o), 368 K; (Δ). Vapor phase mole fraction 1-butaneol at 303 K; (●), 335 K; (○), 368 K; (*). Dotted lines: CPA EoS predictions for 1-propanethiol vapor phase content; solid lines: CPA EoS predictions of 1-butaneliol vapor phase content.
Figure 3. Vapor-liquid equilibria of 1-propanethiol (C₃H₇SH) + 1-butanol (C₄H₉OH) + methane (CH₄). 1-propanethiol liquid phase mole fraction at 303 K; (□), 335 K; (○), 368 K; (△), 1-propanethiol vapor phase mole fraction at 303 K; (−), 335 K; (○), 368 K; (*). Solid lines: CPA EoS predictions.