Designing pedagogical innovation for collaborating teacher teams

Weitze, Charlotte Lærke

Published in:
Journal of Education for Teaching

Link to article, DOI:
10.1080/02607476.2017.1319511

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Designing pedagogical innovation for collaborating teacher teams

Author: Charlotte Lærke Weitze
Email: cw@learning.aau.dk

IT and Learning Design Lab (ILD Lab), Department of Learning and Philosophy, Aalborg University, Copenhagen Campus, Denmark

Abstract
In this design-based research project, teachers co-created and used a new learning design model, the IT-Pedagogical Think Tank Model for Teacher Teams. This continuous-competence-development method enabled teachers to collaborate and develop innovative-learning designs for students in a new hybrid synchronous video-mediated learning environment. The article presents the IT-Pedagogical Think Tank Model and investigates how this new community of practice was supported and cultivated in the educational institution. The study took place at VUC Storstrøm, Denmark, where teachers taught students attending a full-time, two-year, upper-secondary, general-education programme. The findings were that various platforms, tools, and social frameworks supported the pedagogical innovative process and established the team as a professional community of practice in the organisation. The team’s identity was strengthened as it added value to the organisation by inviting other communities of practice from the organisation into collaborative competence-development processes. The team members acted as good examples of innovative learning designers and were able to heighten the level of sophistication in the community’s pedagogical discussions. The school administration’s provision of resources and support was found to be a key factor in successful implementation of the new team meetings.

Keywords: continuous pedagogical innovation, teacher professional development, collaborating teacher teams, organisational learning design.
Learning design for pedagogical innovation for teacher teams

Ongoing changes in organisations and educational technologies inherently create a need for continuously changing practices and innovative pedagogical competences within educational institutions. Therefore, the education and professional development of teachers is often considered a keystone in educational change and improvement (Dede et al. 2009; Laurillard 2012). There is, however, a need to conceptualise how teachers can become innovative, effectively integrate the use of technology into their pedagogical practices (Laurillard 2012; Law 2008; Somekh 2007). There is also a need to investigate the learning-design processes teachers develop and to determine how these processes can be supported by effective tools, materials, and procedures (Agostinho et al. 2011). One problem is that mainstream teacher education typically does not pay sufficient attention to development of the use of technology; in addition, technology changes so quickly that there is a consistent need for teacher professional development on how to create new learning designs involving educational technology (Kirschner, Wubbels, and Brekelmans 2008). Therefore, there is a continuous need for teacher professional development (TPD) for those teachers already in practice (Dede et al. 2009).

Professional development practices for teachers

Once a teacher is educated and has begun working, additional TPD often takes place as (a) short courses arranged internally at the educational institution or by outside partners, (b) learning through participation in projects, (c) informal learning in a school context among peers, or (d) independent studies (Eraut 2008). TPD can be introduced and initiated by others and/or by learners themselves. TPD can take place through the acquisition of new practical professional experiences or new theoretical knowledge, as
well as through a combination of the two; it can occur in individual learning situations or together with other teachers. When aiming to design professional development for teachers, it is important to investigate the current practices that the new practice is being developed to support (Schlager and Fusco 2003). What communities of practice currently exist within an organization, what are their goals, and how do they work together, depend on each other, and support each other – or not (Nicolini 2012)? Understanding these communities, how they connect and how a new practice can fit in, will determine if the experiments and innovations are likely to continue after the introduction period. If a new practice stays “disconnected from the larger learning context—the norms and practices of the collective community—then the system will not improve” (Schlager and Fusco 2003, 217).

Learning to innovate and go beyond knowledge

The question is how to establish TPD for the development of *competences for pedagogical innovation*. When participating in TPD courses, teachers can find it difficult to directly apply the newly acquired knowledge and skills in practice (Huizinga et al. 2014). To be able to actually create pedagogical innovation involving technology, teachers need time to develop the necessary skills by engaging in exploratory play with the relevant technologies. This is an important step in becoming familiar with any new technology, as the teachers will often start with few of the skills needed to use these new tools in their classes (Somekh 2008). Law proposed that “teacher learning for pedagogical innovation is more effectively achieved if the innovation process itself integrates a design for teacher learning in a supportive network of innovators” (2008, 432). Knowledge building and innovation require shared, collaborative, and intentional efforts from members of the community (Brown and Duguid 1991; Engeström and Sannino 2010; Lave and Wenger 1991). It can, however, be difficult for teachers to
collaborate, organise, and schedule effective design team meetings themselves without initial guidelines (Kafyulilo, Fisser, and Voogt 2014). Furthermore, teachers need to build and use their “socio-emotional capacity to engage in change, take risk, and foster trust” (Law 2008).

The learning and innovation processes in a teacher’s daily work

There is a connection between work, innovation, and learning in a teacher’s daily practices. Teachers must constantly improvise or innovate in teaching situations that turn out differently than planned (Schön 1983; Dewey 1933). Though these small-scale, incremental, innovation processes may not be written in the job description, they are part of the school administration’s expectations for the teacher. The teachers’ experiences in this project were, however, that these traditional individual learning and innovation processes were not enough. The purpose of the investigations was therefore to create a new collaborative innovative practice for teacher teams within the educational institution.

Methodology and research design

Approach, data collection, and analysis

The investigation was conducted as a design-based research (DBR) study through two iterations over two-and-a-half years (February 2013 to December 2015). The project sought to investigate which elements, methods, processes, and practices could contribute to the creation of reflective, innovative, and motivating learning designs for teachers in a hybrid, synchronous video--mediated teaching context, with a focus on how to create motivating learning for students. The author of this article, an Aalborg University assistant professor, was the participating researcher, and the teachers were
co-designers in the development and testing process of the new continuous-competence-development model. The study used mixed methods. Unstructured interviews were conducted with all teachers during each workshop, and semi-structured interviews were conducted after the final workshop. All workshops were observed, and actions and utterances were audio- and videotaped. In addition, more than 200 semi-structured and unstructured interviews were conducted with the teachers, school administration, and students. Data were analysed by coding the transcribed data with an informed grounded-theory approach. Both concept-driven coding, using concepts from the theory and previous empirical data to identify themes in the data, and data-driven coding, reading the data and searching for new phenomena which were not known from previous preconceptions of the subject, were used.

Participants and setting

The participants in the experiments were teachers teaching full-time in two-year, upper-secondary, general-education classes. This General Adult Education Programme forms part of the public-education system in Denmark. It is designed to help young adult students, mainly between 16 and 30 years old, improve or supplement their knowledge and skills within general subject areas. The learning environment was an innovative hybrid synchronous-videoconference concept, which they called *The Global Classroom* (Weitze 2016). The Global Classroom allows for synchronous lessons in which the adult students can choose, on a daily basis, between participating in class on campus or from home via videoconference (Figure 1). It is a learning environment in which all participants can communicate and are able to see and hear each other.
Workshops

The experiments took place as eight development workshops in fall 2013 with one teacher team, one IT-pedagogical team-member, and one administrator (n = 5; School-One) and as six test and development workshops in spring 2015 with another teacher team, one IT-pedagogical team-member, and one administrator (n = 6; School Two). The IT-Pedagogical Think Tank Model for Teacher Teams (Weitze 2014, 2015), co-designed with Global Classroom teachers, guided the teachers’ competence development. The teachers studied literature about pedagogical innovation (Darsø, 2011), reflections on theoretical concepts for the professional teacher (Dale, 1998), and learning designs (Laurillard, 2012). The researcher and author of this paper conducted the first two workshops, introducing the IT-Pedagogical Think Tank Model for Teacher Teams (after this: the Think Tank) and coordinating the teachers’ goal-setting phase. In the ensuing workshops, the teachers themselves facilitated the competence-
Development-process. During and after the workshops, the researcher conducted interviews with the teachers in order to identify and investigate the participants’ learning trajectories and refine the model further. The researcher’s active participation in the workshops calls for attention to this dual role and the potential danger of biasing the research. At the same time, this approach made it possible for the researcher to observe, analyse, learn, and bring up relevant theories and to share these reflections with teachers during the different iterations. The researcher monitored and attempted to counteract this potential bias in various ways. For example, the researcher became increasingly concerned with making herself ‘expendable’. Therefore the researcher initiated the following: (a) the teachers themselves led the innovation process, (b) the first teacher team started up a new team with the philosophy that the IT-Pedagogical Think Tank approach could spread like ‘rings in the water’, and (c) an IT-Pedagogical employee participated in order to develop competences for pedagogical innovation for future teacher teams.

Empirical findings from the study

Development practices in the educational institution: subject to investigation

The observations and interviews gave the impression that the teachers at the schools were very busy people who used almost all their time in planning and teaching. The teachers learned how to operate the new videoconference technology at the beginning of the project, but after this introduction, the teacher professional development programme was, to a great extent, a self-directed individual practice. Teachers found that it was difficult to prioritise the development of new learning designs. They also found it difficult to develop new solutions involving their individual pedagogical preferences as well as their specific subject matters. Therefore, the difficulties with teaching in the
hybrid, synchronous learning environment remained.

The School One team of Global Classroom teachers initially engaged in detailed discussions about the problematic issues of teaching and learning in their new Global Classroom environment. Many of the problems occurred in tacit practices that needed to be redesigned. The teachers progressed to the problematizing of the new practice but did not move further into experimentation, reflection, and development of innovative learning designs (Dewey 1933). There seemed to be a gap between teachers and school administration in their expectations and hopes for each other. The teachers wanted help in creating innovative learning designs and, although school administration had provided various teacher professional development initiatives, the teachers still found it difficult. School administration hoped that the teachers could redesign their teaching approaches themselves, while the teachers stated that they had come as far as they could on their own and still faced problems they could not solve. It became apparent that the necessary expertise and competences needed to be developed and that this development process needed to be supported.

Creating a continuous competence development model: the IT-Pedagogical Think Tank for Teacher Teams

The teachers had to become pedagogical innovators, adapting to new educational technology and changing their learning designs accordingly (Collins and Halverson 2010). But teachers reported feeling that they (a) lacked the competence to create pedagogical and subject-specific learning designs for use in the new environment, (b) lacked the time to create learning designs appropriate for the new technological learning environment, and (c) had a need for extended support from the school administration.

In order to develop a more relevant way of creating continuous pedagogical innovation in the educational organisation, a new model for collaboration was
developed using co-design processes with the involved teachers: The IT-Pedagogical Think Tank for Teacher Teams. A series of coherent, theoretical, and empirical pedagogical patterns or themes for pedagogical innovation emerged through the co-design processes with the teachers and the researcher. By working through this pattern, or this collaborative model, the teachers learned that they were able to create innovative learning designs involving technology.

The IT-Pedagogical Think Tank consisted of a group of teachers who would meet for a two-hour period each week, with one hour of individual preparation between the weekly meetings. These meetings continued for five to eight weeks and addressed a chosen issue by following a specific procedure. The IT-Pedagogical Think Tank was thus a combination of the theoretical model (Figure 2), the processes it describes, and the group enacting these processes in collaboration, with the result that the Think Tank established a new practice within the organisation. Ultimately, the purpose of the model was to create a new reflective tool for the teachers that would enable them to create pedagogical innovation in a sustainable, ongoing, and structured way.

IT Pedagogical Think Tank for Teacher Teams: theoretical framework

Figure 2 illustrates the learning and innovation trajectories and knowledge development processes of the teachers who worked in the IT-Pedagogical Think Tank for Teacher Teams – a thinking and acting tool for a continuous competence-development-process for teacher teams (Weitze 2014, 2015).
IT Pedagogical Think Tank for Teacher Teams

weekly processes

The bracketed letters in the descriptions that follow refer to Figure 2. To establish the teacher team, the first meeting was used for:

(S) Clarifying the problem areas through discussion, brainstorming. The teachers described their individual problem areas in addition to those identified by the team. This led to the identification of goals for their competence development process. In Figure 2, the competence-development-process is illustrated by the coloured lines, with the black dots representing the goals. As time passed, new goals were set and the level of competence increased.
At the subsequent weekly meetings, the teacher teams worked through a weekly process consisting of the following:

(A) Input/Presentation of the chosen problem area/theme by the team leader of the day; the team members took turns being the team leader. The presenting teacher’s theme was always either a burning problem, an idea for a solution to such a problem, or a proposal for a new creative learning design, often involving the use of technology. All of the teachers were aware of the next week’s theme and would spend an hour preparing for each meeting.

(B) Reflection/Innovation/Discussion. The teachers were engaged in reflective and innovative work (Dale 1998; Darsø 2011); that is, the teachers intentionally worked at Dale’s (1998) third level of teacher competence, putting aside their daily practical and functional practices and instead discussing issues of a comprehensive character and collaboratively analysing them from a theoretical viewpoint. They were conscious of examining what they knew and what they did not yet know, and they created structured methods to conceptualise and discuss the problem areas. They also aimed at creating a friendly and open space for this conceptualisation, reflection, and innovation.

(C) Evaluation. The team discussed the lessons learned, considering their own short-term and long-term goals as well as new goals. They wrote up these new goals along with the previous goals, which entailed continuously revisiting point (S).

(D) Anchoring/Documentation/Dissemination. For the benefit of memorisation and common explicit conceptualisation of the innovations and solutions, knowledge sharing took place in a structured way on a platform that was available to all teachers and the school administration. This gave everyone an opportunity to participate in creating and using the new knowledge.
(E) ‘I dare you’. The team leader of the following week challenged the team by initiating this activity. To enable informed discussion, the team leader, together with the team, settled on a task for the following week’s meeting. It was important that some tasks consisted of conducting experiments in the class, since the main aim for this think tank was to create motivating learning designs for the students. The tasks also consisted of finding and reading new material for a problem area, or finding and experimenting with new educational technology.

Administrator’s role. The teacher team’s administrator (principal of the school or the head of the department) participated for ten minutes every week. The principal’s interest and support for the team was found to be very important, as the aim was to create a new organisational innovative learning design. The principal’s participation enabled new forms of knowledge development and knowledge sharing between school administration and teachers.

Summary

The teacher teams used the model as a thinking and acting technology on a theoretical and practical level that enabled change in their learning designs (Weitze 2016). The teachers became self-directed learners and innovative learning designers who were able to use the opportunities to (a) locate new issues; (b) ideate, create, and experiment with innovative solutions; (c) develop new knowledge concerning learning designs, new use of technology, and new ways of sharing knowledge; and (d) anchor the new knowledge in their educational institution. According to the teachers, this new team innovation process empowered, engaged, and motivated them in their daily working life. In an interview after the workshops, one teacher stated:
I think we have gained a lot by working in this way, and in a sense I have rediscovered the meaning of being a teacher. We have learned to think outside the box pedagogically and have acquired new innovative competencies, and we’ve come a long way. The result is that we dare to throw ourselves into using technology in new ways and exploring new learning designs. I've got a crazy number of ideas that I have begun to implement into my teaching, and I can see that this motivates the students.

The IT-Pedagogical Think Tank lived up to its purpose and aim: to provide an opportunity for competence development in the teachers’ busy lives, using their daily teaching problems as a starting point and providing team support, co-innovation, and collaboration; in other words, a new community of practice in their close teaching environment (Weitze 2015).

What collaborative strategies supported this lively new learning community?

The strategic intent of the IT-Pedagogical Think Tank was to create a new community of practice that could continuously innovate new learning designs for the technology-enhanced learning environment, and this goal was reached in the experiments. But what actions were taken, and how was this way of collaborating cultivated and supported when zooming out to the larger organisational level (Nicolini 2012)?

In Seven Principles for Cultivating Communities of Practice, Wenger, McDermott, and Snyder (2002) ask the question “How do you design for aliveness? Certainly you cannot contrive or dictate it. You cannot design it in the traditional sense of specifying a structure or process and then implementing it” (50). In the current study, the Seven Principles are used to examine how the IT-Pedagogical Think Tank cultivated “lively” collaboration within the larger context of the organization:
1. Design for evolution

The IT-Pedagogical Think Tank designed for evolution by combining design elements in a way that could catalyse the community’s development.

- A website was created to display and support the use of the IT-Pedagogical Think Tank model. The online availability of the teacher teams’ new learning designs helped inspire other IT-Pedagogical Think Tank teacher teams. The website also provided literature about learning, learning design, pedagogical innovation, and technological literacy for teachers working in the Think Tank.

- In their meetings, the teachers utilised an interactive and agile project-development software tool (Trello, 2015) to clarify, prioritise, develop, and keep track of their goals and milestones for their competence-development.

- When collaborating, teachers utilised a range of interactive tools that provided opportunities for them to learn by experimenting with these new technologies.

- Social collaborative structures were built into the new community: team members took turns being team leader, and the administrator participated in each meeting for ten minutes. This continuously made it possible for participants to co-decide which matters were important to innovate on in the community.

Evolution is common to all communities, and the primary role of designing for a lively community is to catalyse that evolution. The virtual and social structures of the project supported the continuous development of collaboration in the teams.

2. Open a dialogue between inside and outside perspectives

Often, one of the advantages in a community is that its members can appreciate the issues at the heart of the domain. They know what knowledge is needed and what
challenges and issues they face. However, it can also be very fruitful to see one’s own world from new perspectives and provide new visions for how the communities’ practices and possibilities can evolve.

- The principal’s participation in the meetings was a very positive experience for the teacher team and for the principal. In these short encounters, the principal was informed about the high-quality collaboration and innovations the teachers were developing, and the principal was very impressed. This was a natural setting for the principal and the teachers to discuss values, principles, and new opportunities for the students, the teachers, the educational organisation, and the technology-enhanced learning environment.

- Team leaders assigned tasks in advance. Therefore, teachers had time to prepare theoretically by reading and/or practically through experimentation. Each meeting’s team leader had also studied the problem, often from a research-based angle. This made it possible for the team not only to learn from its own common expertise and experience, but also to conduct creative and innovative discussions from an informed starting point. A member of the school’s IT-Pedagogical Team also participated in the meetings. This member’s expert knowledge, made it possible for teachers to use knowledge already known to the organisation to solve their problems and create new common knowledge.

By inviting members of other communities of practice into the Think Tank’s collaboration process, new potentials were discovered and new trust and knowledge were created. Teachers became comfortable with their roles as self-directed learners and developed the habit of seeking new research-based knowledge to inform their problem
areas.

3. Invite different levels of participation

Lively communities of practice may benefit from leaving participation opportunities open for future members or for members with different levels of interest.

- Three communities of practice participated in the project: teacher teams, principals, and IT-Pedagogical team-members. This enabled different parts of the organisation to participate in and benefit from the new innovative, theoretical, and practical knowledge created in the innovative teams.

The individual teacher teams represented their own innovative knowledge in the educational institution and shared this knowledge by arranging experiments, discussions, and knowledge dissemination for other communities of practice in the organisation.

4. Develop both public and private community spaces

The first Global Classroom teacher team shared its innovative learning designs with a subsequent teacher team. Public events like this enable teachers to “appreciate the level of sophistication the community brings to a technical discussion, how it rallies around key principles, and the influence it has in the organisation” (Wenger, McDermott, and Snyder 2002, 58). While such events are valuable, however, the project demonstrated that the design of a lively community goes far beyond public events.

- The collaboration in the Think Tank provided the opportunity for the members to collaborate, to clarify and discuss problems, to seek knowledge, to create new knowledge, and to innovate solutions and new learning designs in an
empowered way (Weitze 2015). These ‘private’ team meetings were also helpful when qualifying the ideation processes on how to form meetings, ‘expert workshops’, and presentations with the team in more public spaces while, at the same time, consolidating the team-feeling.

Arranging expert workshops can serve as inspiration for collaborative processes in other teacher teams in the organisation; at the same time, offering such workshops can strengthen the individual IT-Pedagogical Think Tank teams’ identity as a collaborating team.

5. Focus on value

The individual learners’ motivation, interests, needs, and goals may be the richest resources or inspiration for their learning, competence development, and innovation processes. But the teams’ collaboration and competence development processes must also contribute value to that organisation, though it may not be clear at the outset what that value will ultimately be.

- Teachers developed clear goals and milestones through discussions; team members became initiators and developers of their own visions and innovative teaching practices. The teachers developed knowledge, competence, and value in the following four areas (Figure 2, lower left corner):
 1. Technology-enhanced learning environments (TELEs)
 2. Innovative learning designs
 3. Innovative use of educational technology
 4. Professional theoretical literature (articles, edu-blogs, videos, etc.) in the fields of pedagogy, pedagogical innovation, teacher competence development, technological literacy, and other relevant subject areas
• The teachers succeeded in suggesting how to determine when their goals and milestones were reached, and this contributed to their understanding of what values were created in the pedagogical innovation process and what competencies they had gained.

• An important value, emphasised by several teachers, was that they had developed a new common language. This was the result of reading new literature and discussing and experimenting with the new learning designs. Principals and IT-Pedagogical team members also noticed a new ‘freedom’ of discussing pedagogy and pedagogical innovation among many teachers at both schools.

• The principal emphasised how valuable the teachers’ collaboration and innovations were in the educational organisation. For example, the principal reported that the teachers had reached many of the organisation’s stated values and goals.

The teacher-teams created value for the organisation by developing skills as pedagogical innovators with the potential to locate, develop, and solve issues in the TELE. The institution was enriched by the presence of a new collaborative-learning environment with new connections to other communities of practice in the organisation.

6. Combine familiarity and excitement

There is a fine line between creating a comfortable environment for participants and spurring them on to creative solutions. It is important to create a neutral place where participants are comfortable bringing up ideas and giving advice without feeling an obligation to ‘be productive or successful’. But the team must also ensure that new solutions and ideas are being created to fulfil the strategic intent of the IT-Pedagogical
Think Tank: to be a continuous innovative community in and for the organisation.

- The IT-Pedagogical Think Tank model, became a familiar framework the teachers used in order to move through the process of pedagogical innovation each week. Because team members’ experiences and expertise can sometimes become a limitation for trying out new ideas and experimenting with difficult issues, teachers were encouraged to create an atmosphere in the team discussions that was somewhat provocative.

- Teachers were continuously challenged when working in the Think Tank. They had to face and solve new issues and intentionally consult and be informed by new knowledge. At the same time, the familiarity of their constructed collaborative processes provided a needed balance to their continuous investigation.

The Think Tank team-meetings stretched beyond routine teamwork activities such as traditional functional and practical issues from the teachers’ daily life in an educational institution. Instead, the weekly meetings challenged and inspired teachers to reflect on and re-think their traditional teaching approach and create new pedagogical solutions in common ideation processes.

7. Create a rhythm for the community

Every community has a rhythm or tempo as long as it is alive. Among the various interactions which create this rhythm are the events in the community. It is important to find a balance between offering too many events – making the demands of participation overwhelming – and too few – putting a stop to collaboration.
• The teachers agreed that it would be meaningful for them to meet once every week for as many weeks as there were team members (including the principal). This would give every team member and the principal one opportunity per activity period to serve as team leader and present their ‘burning problem’. The teachers suggested that this activity period should be repeated twice per school year to ensure that they would have new and worthwhile issues to discuss and develop among team members.

• The teachers on the team also continued to work together in more informal ways between Think Tank meetings.

• An important finding was that the school administration had to support the IT-Pedagogical Think Tank team’s rhythms by scheduling the team meetings into team members’ schedules and by expressing the expectation to teachers that these meetings would be included in their job responsibilities.

The teachers found that there was a natural balance or rhythm to their IT-Pedagogical Think Tank meetings, but they also found that this rhythm had to be supported by the school administration to be effectuated.

Conclusion

Teaching in a hybrid, synchronous-learning environment, the teachers in this project had experienced that the traditional individual-learning processes and the traditional teacher professional development being offered were insufficient. Having experienced a lack of support for the pedagogical innovation process, teachers were motivated to serve as co-designers for the IT-Pedagogical Think Tank for Teacher Teams. As they worked within this thinking and acting model, the teachers developed a common theoretical/conceptual pedagogical language and conducted informed ideation processes
and experiments. The Think Tank functioned as a new organisational learning design promoting structured pedagogical innovation. The teachers managed to transform non-knowledge or problems into ideas and pedagogical innovation and then back into new anchored knowledge for both the team and the organisation and were empowered and motivated in this process.

The project used Wenger, McDermott, and Snyder’s framework (2002) to analyse how this new way of collaborating in the IT-Pedagogical Think Tank was cultivated, supported, and implemented at the larger organisational level. Seven specific findings, in line with their seven principles for cultivating communities of practice, were identified. First, social frameworks and virtual platforms and tools created ‘roads’ and structures that made development of the community possible. Second, the IT-Pedagogical Think Tank community benefitted from collaboration with other communities within the organisation, discovering new potentials, creating common knowledge, and establishing new trusting relationships. The teachers created a new habit as collaborating, self-directed learners using new research-based theory to inform their problem areas and created a new common language. Third, the teacher teams were the main participants in the IT-Pedagogical Think Tank, but they also created new initiatives and possibilities for other communities in the organisation. Fourth, the teachers in the IT-Pedagogical Think Tank acquired an identity as team creating innovative pedagogical learning designs, a new collaborating community of practice. Fifth, the team added value to the larger organisation by contributing as good examples of innovative learning designers who were able to solve problems and heighten the level of sophistication in pedagogical discussions in the organisation. Sixth, although the Think Tank became a familiar practice for the teachers, it never became boring; familiarity was balanced by the continuous challenge of solving new problems and
acquiring new knowledge. Seventh research identified how important it was that school administration supported the rhythm, timing, and scheduling of the teams’ meetings by identifying space to realise this practice in the teachers’ busy lives.

In interviews conducted six months after the project ended, teachers from the IT-Pedagogical Think Tank Teams reported that this project had permanently altered the way they worked with their colleagues in teams. It made them more courageous and innovative. Despite initial plans to expand the model at the schools, school administration changed after the project ended, and the new administrators did not choose to support further dissemination of the model. However, Aalborg University now offers a new course for master students in which they can study the Innovative Pedagogical Practices for Teacher Teams model. This new course will hopefully serve to impact future teachers and support them in becoming creators of pedagogical innovative teacher teams in their educational institutions.

References

London: Temple Smith.

New York: Routledge.

This article is partly rewritten from sections in the author’s PhD thesis (Weitze 2016), defended in May 2016.