Off-Pathway Intermediates in the Conversion of Sugars to Plastic

Tosi, Irene; Riisager, Anders; Taarning, Esben; Meier, Sebastian

Published in:
Book of Abstracts Sustain 2017

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Off-Pathway Intermediates in the Conversion of Sugars to Plastic

Irene Tosi*¹, Anders Riisager¹, Esben Taarning², Sebastian Meier³

1: Technical University of Denmark, Department of Chemistry, Kemitorvet, 2800-Kgs. Lyngby, Denmark.
2: Haldor Topsøe A/S, Haldor Topsøes Allé 1, 2800-Kgs. Lyngby, Denmark.
*Corresponding author email: itosi@kemi.dtu.dk

Carbohydrates are the most abundant compounds forming biomass and their conversion into chemicals is a central topic in the research of alternative resources for replacing the use of fossil feedstock. Using heterogeneous catalysts, simple sugars can be converted into chemicals and fuels. Recently, Lewis acidic zeolites have received much attention for their ability to bind and convert sugars. Particularly Sn-beta zeolite has been studied as catalyst for the production of methyl lactate and other monomers for bio-based polymeric materials.¹ The process is carried out in short-chain alcohol, normally methanol, because the catalyst shows higher stability in alcohol than in water.² Under these conditions, the sugar molecules react with the solvent to form methyl glycosides, resulting in complex reaction mixtures of isomeric glycosides (pyrano-furano and α-β forms) (Scheme 1). We use 2D ¹H-¹³C HSQC to identify and quantify all different forms of sugars as off-pathway intermediates in the conversion of sugars to plastic (Figure 1).

References: