Magnetoelastic Vibrational Energy Harvester with Enhance Robustness

Alcala, Lucia R.; Passer, T.; Thomsen, Erik Vilain

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Keywords: Vibrational energy harvester, robustness, strengthening.

The need to power wearable devices and wireless sensor systems increases the demand on small-scale power sources. Miniaturized cantilever-based vibrational energy harvesters (VEHs) capable of transforming energy from the mechanical domain, i.e. vibrations, into energy in the electrical domain have recently received considerable interest [1-4]. Most ambient vibrations are characterized by a low frequency range [2]. In order to tune in to the low frequencies the common approach is to increase the cantilever length and reduce its thickness, which leads to very fragile structures. This fragility generates an upper limit to the maximum acceleration at which the harvesters can operate. Furthermore, it has been previously demonstrated that the harvested power increases as the square of the acceleration [3]. Therefore, it becomes of utmost importance to develop procedures for increasing the robustness of the cantilevers. A five-step strengthening process, which consisted of a set of steps that included spray coating and the deposition of the bottom electrode, piezoelectric layer, top electrode and thick oxide layer is used as a mask. This layer is stripped and a 1100 nm oxide growth in step b reduces the stress concentration at the anchoring point, which is achieved by a corner rounding mechanism based on the different growth rates of SiO₂ depending on the silicon crystal orientations that are revealed at the surface after the KOH definition of the beams. The rounding effect was studied by carrying out simulations using the Silvaco Athena process simulation software. Fig. 4 shows the effect of rounding the sharp corners by growing the oxide layer. The dimensions of the fabricated cantilevers are shown in Tab. 1. SEM images of a cantilever with and without the corners rounded are shown in Fig. 5 and 6, respectively.

The mean resonant frequency for the regular and enhanced cantilevers is 301.4 ± 3.0 Hz and 277.7 ± 5.9 Hz, respectively. This difference in resonant frequency is the result of different beam thicknesses due to the combination of three effects: the inhomogeneity of the KOH etching, the corner rounding oxide growth and the magnetic foil position alongside the beam. The procedure followed to test the devices was to excite them at their resonant frequency for increasing accelerations until they eventually broke. The sinusoidal signal was generated from an Agilent 33220A waveform generator and amplified by a Pioneer VSX-405SRDS MkII amplifier, which is connected to a B&K Minishaker 4810, the direct excitation source for the devices. The experimental results obtained are shown in Table 2. It can be seen that the mean acceleration at which the enhanced beams broke is around twice as much as their counterparts mean value, which are 5.6g and 3.0g, respectively. This increased tolerance clearly improves both the handling of the device and the in situ operation, enabling also larger deflections in magnetoelastic VEHs.

![Figure 1. Steps followed to round the corners once the beam has been defined (a-c), three-stack and resist deposition (d).](image)

![Figure 2. Steps followed to define the top electrode (e) and releasing the beam (f,g).](image)

![Figure 3. Beam released and bottom electrode deposition (h-i). Ferromagnetic foils and magnets are incorporated (f).](image)

![Figure 4. Cantilever profile before (a) and after (b) corner rounding simulated with Silvaco Athena software.](image)

![Figure 5. SEM image of cantilever without corners rounded.](image)

![Figure 6. SEM image of cantilever after corners are rounded.](image)

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Enhanced</th>
<th>Regular</th>
<th>Mean values</th>
<th>Standard deviations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>6.5 mm</td>
<td>6.0 mm</td>
<td>286.2</td>
<td>31.4</td>
</tr>
<tr>
<td>Width</td>
<td>6.0 mm</td>
<td>5.5 mm</td>
<td>286.2</td>
<td>31.4</td>
</tr>
<tr>
<td>Thickness</td>
<td>~ 40μm</td>
<td>200±15μ</td>
<td>299.4</td>
<td>31.3</td>
</tr>
<tr>
<td>Area</td>
<td>39 mm²</td>
<td>29 mm²</td>
<td>299.4</td>
<td>31.3</td>
</tr>
<tr>
<td>Foil thickness</td>
<td>150 μm</td>
<td>279.2</td>
<td>299.4</td>
<td>31.3</td>
</tr>
<tr>
<td>Foil Length</td>
<td>3.25 mm</td>
<td>258.9</td>
<td>306.2</td>
<td>31.3</td>
</tr>
<tr>
<td>Magnet length</td>
<td>1 mm</td>
<td>258.9</td>
<td>306.2</td>
<td>31.3</td>
</tr>
<tr>
<td>Magnet thickness</td>
<td>1 mm</td>
<td>258.9</td>
<td>306.2</td>
<td>31.3</td>
</tr>
</tbody>
</table>