Faecal bacteria on seaweeds in Greenland

Kreissig, Katharina Johanna; Hansen, Lisbeth Truelstrup; Jensen, Pernille Erland

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Faecal bacteria on seaweeds in Greenland

Katharina J. Kreissig¹, Lisbeth Truelstrup Hansen¹, Pernille Erland Jensen²
¹National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark; ²Arctic Technology Centre, Department of Civil Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark;

Introduction
Edible seaweeds are of private and commercial interest in Greenland. However, little is known about the impact of harvest locations on the microbial food safety.
In this study, we looked at the influence of the proximity of the discharge of human wastewater on the suitability of seaweed collected from the shoreline as a food item. We also compared the content of faecal indicator bacteria in the seawater with that on the harvested seaweed.

Research questions
1) Does the discharge of human wastewater impact the content of faecal bacteria on seaweed harvested in the proximity of the discharge point?
2) Does the concentration of faecal bacteria in water reflect their abundance on seaweeds?

Materials and methods

<table>
<thead>
<tr>
<th>Water</th>
<th>Seaweed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Removal of surface bacteria</td>
</tr>
<tr>
<td></td>
<td>0.5 x 10⁻⁸</td>
</tr>
</tbody>
</table>

Dilution series
Incubation on petri films

Results
Results are shown as colony forming units (CFU) of the faecal indicator bacteria E. coli in relation to sample volume respectively weight.

Conclusions and outlook
1) Areas close to waste dumps receiving municipal waste, including black water, are not suitable for seaweed harvesting due to the pollution from human waste as indicated by the presence of faecal bacteria.
2) The concentration of faecal bacteria in water is not an accurate predictor for the abundance on seaweed.

Harvesting from the coast at small settlements such as Sarfannguit is possible without problems from faecal contamination.
It is not possible to predict seaweed pathogen load from a water sample alone, the hydrogeography needs to be taken into account, too.

Further studies will be carried out, analysing DNA extracted from the same samples as used for this incubation.

Acknowledgements
This PhD project is funded through a scholarship by the Greenland Research Council.