Impact of external carbon dose on the removal of micropollutants using methanol and ethanol in post-denitrifying Moving Bed Biofilm Reactors

Torresi, Elena; Escolà Casas, Mònica; Polesel, Fabio; Plósz, Benedek G.; Christensson, Magnus; Bester, Kai

Published in:
Water Research

Link to article, DOI:
10.1016/j.watres.2016.10.068

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Impact of external carbon dose on the removal of micropollutants using methanol and ethanol in post-denitrifying Moving Bed Biofilm Reactors

Elena Torresi† 1,2, Mònica Escolà Casas† 3, Fabio Polesel2, Benedek G. Plósz2*, Magnus Christensson1*, Kai Bester3*

† Joint first authors; * Corresponding authors: kb@dmu.dk; magnus.christensson@anoxkaldnes.com; beep@env.dtu.dk;

1 Veolia Water Technologies AnoxKaldnes, Klosterängsvägen 11A, SE-226 47 Lund, Sweden
2 Department of Environmental Engineering, Technical University of Denmark, Bygningstорvet B115, 2800 Kgs. Lyngby, Denmark
3 Department of Environmental Science, Århus University, Frederiksbergvej 399, 4000 Roskilde, Denmark

Keywords: pharmaceuticals; MBBR; carbon source; biofilms; wastewater; denitrification
Abstract

Addition of external carbon sources to post-denitrification systems is frequently used in wastewater treatment plants to enhance nitrate removal. However, little is known about the fate of micropollutants in post-denitrification systems and the influence of external carbon dosing on their removal. In this study, we assessed the effects of two different types and availability of commonly used carbon sources—methanol and ethanol—on the removal of micropollutants. Two laboratory-scale moving bed biofilm reactors (MBBRs), containing AnoxKaldnes K1 carriers with acclimated biofilm from full-scale systems, were operated in continuous-flow using wastewater dosed with methanol and ethanol. Batch experiments with 22 spiked pharmaceuticals were performed to assess removal kinetics. Acetyl-sulfadiazine, atenolol, citalopram, propranolol and trimethoprim were easily biotransformed in both MBBRs (biotransformations rate constants k_{bio} between 1.2 and 12.9 L g$_{\text{biomass}}^{-1}$ d$^{-1}$), 13 compounds were moderately biotransformed (rate constants between 0.2 and 2 L g$_{\text{biomass}}^{-1}$ d$^{-1}$) and 4 compounds were recalcitrant. The methanol-dosed MBBR showed higher k_{bio} (e.g., 1.5 to 2.5-fold) than in the ethanol-dosed MBBR for 9 out of the 22 studied compounds, equal k_{bio} for 10 compounds, while 3 compounds (i.e., targeted sulfonamides) were biotransformed faster in the ethanol-dosed MBBR. While biotransformation of most of the targeted compounds followed first-order kinetics, removal of venlafaxine, carbamazepine, sulfamethoxazole and sulfamethizole could be described with a cometabolic model. Analyses of the microbial composition in the biofilms using 16S rRNA amplicon sequencing revealed that the methanol-dosed MBBR contained higher microbial richness than the one dosed with ethanol, suggesting that improved biotransformation of targeted compounds could be associated with higher microbial richness. During continuous-flow operation, at conditions representative of full-scale denitrification systems (hydraulic residence time = 2 h), the removal efficiencies of micropollutants were below 35% in both MBBRs, with the exception of atenolol and trimethoprim (>80%). Overall, this study
demonstrated that MBBRs used for post-denitrification could be optimized to enhance the biotransformation of a number of micropollutants by accounting for optimal carbon sources and extended residence time.
1. Introduction

Currently used biological processes in conventional wastewater treatment plants (WWTPs) are designed to remove organic carbon and nutrients (nitrogen and phosphorus). As organic micropollutants are gaining attention due to the associated environmental risks (Daughton and Ternes, 1999; Plósz et al., 2013), the optimization of biological processes for removal of micropollutants during wastewater treatment is crucial (Joss et al., 2008). Micropollutants (e.g., pharmaceuticals and personal care products) are generally recognized as non-growth substrates (secondary substrates), as they are present in wastewater in too low concentrations (ng L\(^{-1}\) to µg L\(^{-1}\)) to support biomass growth (Fischer and Majewsky, 2014; Rittmann, 1992). Therefore, biological transformation of micropollutants is mainly the result of cometabolic mechanisms, whereby the removal of non-growth substrates (micropollutants) requires the presence of primary substrates (i.e., COD, nutrients) to support biomass growth (Criddle, 1993; Rittmann, 1992). In cometabolism, the biotransformation of micropollutant is typically catalyzed by non-specific enzymes (e.g., mono- or di-oxygenases, \(N\)-acetyltransferases, hydrolases) or by cofactors produced during the microbial conversion of the primary substrate (Criddle, 1993; Fischer and Majewsky, 2014). Nevertheless, the interaction between primary substrate and micropollutants is complex and not completely understood. In fact, the presence of primary substrate has been reported to either enhance the removal of micropollutants, e.g., by regenerating reductants such as NAD(P)H under aerobic conditions (Alvarez-Cohen and Speitel, 2001; Liu et al., 2015), or decrease it, due to competitive enzyme inhibition (Fischer and Majewsky, 2014; Plósz et al., 2010).

Recent studies have proposed biofilm systems, e.g., moving bed biofilm reactors (MBBR), as a promising alternative to activated sludge systems (CAS) with respect to the attenuation of micropollutants (Escolà Casas et al., 2015a; Falás et al., 2012; Hapeshi et al., 2013; Torresi et al.,
In general, most of the studies concerning the removal of micropollutants during biological wastewater treatment have focused on aerobic systems, whereas only little information is available for anoxic denitrifying conditions: Plósz et al., 2010; Su et al., 2015; Falás et al. 2013, Suárez et al., 2010. While pharmaceuticals such as diclofenac, metoprolol, erythromycin and roxithromycin were found to be transformed mainly under aerobic conditions in activated sludge using synthetic wastewater (Suárez et al., 2010) and in hybrid biofilm-activated sludge processes (Falás et al., 2013), some of the investigated chemicals had similar (i.e., bezafibrate, atenolol, clarithromycin and N\(^4\)-acetylsulfamethoxazole) or higher (i.e., levetiracetam) biotransformation under anoxic conditions than under aerobic ones (Falás et al., 2013). Hence, anoxic biological processes in conventional WWTPs should be considered as a potential step to optimize removal of micropollutants.

The type of carbon source is known to have a strong impact on the structure of denitrifying microbial communities and thus on denitrification efficiency (Baytshtok et al., 2009; Hagman et al., 2007; Lu et al., 2014). This has specific relevance to post-denitrification reactors in full-scale WWTPs, where nitrate removal is achieved by dosing external carbon sources such as methanol and ethanol (Louzeiro et al, 2002; Santos et al., 2001). Methanol and ethanol are metabolized by denitrifying bacteria through different pathways. Methanol undergoes the metabolic reaction of single-carbon compounds, which is exclusive to methylotrophs because of their unique key enzyme (methanol dehydrogenase) that catalyzes the oxidization of methanol to formaldehyde (Anthony et al., 1982, 2011). Instead, ethanol is easily converted by bacterial cells to Acetyl-CoA before entering the glyoxylate cycle (Anthony et al., 2011). Thus, microbial communities in post-denitrifying systems using either of these carbon sources may be fundamentally different and potentially exhibit a different biodiversity and functionality with more or less microbial specialists able to biotransform organic micropollutants. Additionally, biodiversity in terms of species richness
(the number of species) and evenness (the relative abundance of the species) (Wittebolle et al., 2009) was shown to positively associate with the biotransformation of a number of micropollutants in aerobic activated sludge (Johnson et al., 2015; Stadler and Love, 2016) and nitrifying MBBRs (Torresi et al., 2016). Further investigation of the impact of biodiversity in different biological treatment systems seems thus required.

In this study, we evaluated the elimination of selected micropollutants (i.e., pharmaceuticals) in laboratory-scale post-denitrifying MBBRs dosed with methanol or ethanol. Biotransformation kinetics and removal efficiencies were assessed through targeted batch experiments and during continuous-flow MBBR operation, respectively. The objectives of our study were: (i) to investigate the impact of different types of external carbon sources (methanol and ethanol) for post-denitrification on micropollutant biotransformation; (ii) to assess the structure of the denitrifying microbial community of MBBR biofilms, following continuous dosing with either methanol or ethanol; and (iii) to evaluate the influence of organic substrate availability on the transformation of micropollutants and the related mechanisms, i.e. competitive inhibition and cometabolic enhancement.

2. Materials and Methods

2.1 Description of the post-denitrifying systems

Two Swedish WWTPs, i.e., Sjölunda and Klagshamn are currently dosing methanol or ethanol, respectively, as external carbon source in two-stage post-denitrification MBBRs. Thus, two laboratory-MBBRs were built to resemble such post-denitrification stages, using carriers (AnoxKaldnes K1) from the first post-denitrification tank of the respective WWTPs already adapted to methanol and ethanol dosing. The WWTPs are described in Section S1 of the SI (Supporting
Information). Both laboratory-MBBRs (1 L) were operated in continuous feeding of the same wastewater, which was collected after the (aerobic) nitrification step (trickling filter) of Sjölunda WWTP (Lund, Sweden). Thus, during continuous-flow operation, only the indigenous nitrate and nitrite present in the wastewater (averaged concentration of 13 and 1.2 mg L\(^{-1}\) respectively) were used for denitrification. The filling rate of both reactors was 40%, giving a surface of 0.2 m\(^2\). The amount of indigenous micropollutants in the reactor influents (consisting in the collected wastewater and feed containing carbon-source) was analyzed. Twelve compounds were quantified giving concentrations between 0.04 µg L\(^{-1}\) (trimethoprim) and 78 µg L\(^{-1}\) (iohexol). Complete details of these results are given in Table S6 (SI).

The reactors were continuously flushed with nitrogen gas and stirred for the mixing of the carriers and to strip eventual residual dissolved oxygen. Both reactors were kept at 15°C using a water bath. The feed wastewater was mixed and kept at 4°C during the whole experiment. Phosphate was added to the feed to reach a concentration of 0.5 mg L\(^{-1}\) to ensure biofilm growth on the carriers.

Micropollutant removal and denitrification rates in MBBRs were assessed in two main experiments: (i) batch conditions (24 h) and (ii) continuous-flow operation (2 months). The carbon availability of ethanol and methanol into the two MBBRs was defined as the ratio between the influent loading of organic carbon (COD\(_{\text{added}}\)) and the native loading of nitrate (NO\(_3^-\)N\(_{\text{influent}}\)) in the wastewater samples. Optimum COD\(_{\text{added}}\)/NO\(_3^-\)N\(_{\text{influent}}\) ratio (gCOD gN\(^{-1}\)) for complete denitrification is typically around 4 (Metcalf & Eddy, 2003).

2.2 Analytical methods

All the samples taken for analysis of conventional pollutants (NH\(_4^+\)-N, NO\(_3^-\)-N, NO\(_2^-\)-N, soluble COD and PO\(_4^{3-}\)) in batch and continuous experiments were filtered through 0.45 µm glass fiber...
filters (Sartorius, Göttingen, Germany). Total COD and total nitrogen were analyzed on the unfiltered sample. All samples were prepared in Hach Lange kits (LCK 303, LCK 339, LCK 341 and LCK 342) and analyzed in a Hach Lange DR2800 spectrophotometer. DO, pH and temperature in the reactors were measured at each sampling occasion, using a Hach HQ40d multi DO probe and a HANNA H1991001 pH-meter. The attached biomass concentrations were calculated from the difference in weight of 3 dried carriers (105 °C for >24 h) before and after biofilm removal (in 2M H₂SO₄) with subsequent brushing (see Figure S2 for results), as previously considered (Escolà Casas et al., 2015a; Falås et al., 2012; Torresi et al., 2016). Samples for micropollutants were frozen at -20 °C prior analysis and analyzed via direct injection using HPLC-MS/MS as described in Escolà Casas et al. (2015a). Information regarding sample preparation, HPLC, mass spectrometry data, LOD and LOQ of compounds are shown in Escolà Casas et al. (2015a) and in Section S2 (SI).

2.3 Chemicals

Twenty-two relevant micropollutants (i.e., pharmaceuticals) were selected for this study. Information regarding CAS numbers and chemical suppliers is found in the supplementary information in Escolà Casas et al. (2015b). The pharmaceuticals included: (i) four beta-blockers, i.e., atenolol, metoprolol, propranolol and sotalol; (ii) five X-ray contrast media, i.e., diatrizoic acid, iohexol, iopamidol, iopromide, iomeprol; (iii) three sulfonamides, i.e., sulfadiazine, sulfamethizole and sulfamethoxazole and the metabolite acetyl-sulfadiazine; (iv) three analgesics, i.e., phenazone, diclofenac and ibuprofen; (v) three anti-epileptics/anti-depressants, i.e., carbamazepine, venlafaxine and citalopram; (vi) four antibiotics, i.e., erythromycin, clarithromycin, trimethoprim and roxithromycin.
2.4 Batch experiment

To investigate how the type of dosed carbon source influences the removal of micropollutants in post-denitrifying MBBR, batch experiments were performed in the same reactors used during continuous-flow operation. These experiments were conducted after 3.5 months of continuous-flow operation of the two systems. During the batch experiments, a COD$_{added}$/NO$_3$-N$_{influ}$ ratio of 3.4 for both reactors was adopted to obtain excess concentration of nitrate. Anoxic conditions were maintained by flushing the reactors with nitrogen gas during the experiment. The feed used for the batch consisted of the same wastewater used in continuous operation spiked with 239 ± 2 mg COD L$^{-1}$ of methanol for the methanol-dosed reactor and the same amount of ethanol for the ethanol-dosed reactor, 70 ± 3 mg NO$_3$-N L$^{-1}$ in form of sodium nitrate and 22 micropollutants with an initial nominal concentration of 2 μg L$^{-1}$. The micropollutants were added from a stock solution (40 mg L$^{-1}$ in methanol). To minimize the increase of COD concentration in the batch feed due to the methanol from the stock solution, the micropollutant solution was first spiked into an empty glass beaker and the methanol was let to evaporate for approximately 1 hour. Afterwards, the feed was added to the beaker containing the micropollutants and mixed to re-dissolve the micropollutants. The batch experiment lasted 24 hours and samples for conventional and micropollutants analysis were taken at regular intervals. To keep the biomass concentration constant during the experiment, three carriers were withdrawn from the reactors each time a sample was taken for analysis. The pH value in both reactors was continuously measured and adjusted to 7.5 using 1M HCl. The temperature was kept constant at 15°C.

2.4.1 Denitrification during batch experiment

Denitrification rates normalized on surface area of reactors $r_{NO3,2-N}$ (gNO$_3$-N m$^{-2}$ d$^{-1}$) and specific denitrification rates accounting for the biomass $k_{NO3,2-N}$ (gNO$_3$-N g$^{-1}$ biomass d$^{-1}$) were derived
through linear regression using NO$_3^-$-N and NO$_2^-$-N measurements during batch experiment. An accumulation of nitrite in the systems was noticed (~ 6 mg L$^{-1}$), therefore NO$_{3,2}^-$-N utilization curves accounting also for NO$_2^-$-N concentration were derived accordingly to Sözen et al. (1998).

A two step-denitrification activated sludge model (ASM) was used to describe up-take of primary substrates (i.e., readily soluble biodegradable COD (S_S), soluble nitrate (S_{NO3}) and nitrite (S_{NO2})) which was extended with the Activated Sludge Model for Xenobiotics ASM-X (Plósz et al., 2012; Polesel et al., 2016) to determine micropollutant biotransformation rates (Table 1). Readily soluble biodegradable COD (S_S) was determined as the difference between soluble COD (sCOD)—measured during the experiments—and soluble inert COD (S_I)—calculated according to Roeleveld and Van Loosdrecht (2002). The ASM for denitrification was adapted from Pan et al. (2015) and included two process rate equations with reduction of nitrate to nitrite (R1) and nitrite to nitrogen (R2) (Table 1). Parameters that could not be identified through model calibration to experimental results (maximum specific growth rates μ_H, affinity constants for substrate—K_{S1} and K_{S2}—and for nitrogen species—K_{NO3}^{HB} and K_{NO2}^{HB} —) were adopted from literature (Hiatt and Grady, 2008). Parameters that are known to be sensitive to the experimental data (i.e., heterotrophic yields Y_H, anoxic growth factors for the process 1 and 2, η_{g1} and η_{g2}) were calibrated. Definition of the components and model calibration are presented in Section S3 and Table S1 (SI). The model was implemented in AQUASIM 2.1d (Reichert et al., 1994) and the parameters were estimated using the secant method embedded.

2.4.2 Micropollutants removal kinetics during batch experiment

Model structures to assess biotransformation rate of micropollutants were identified using the ASM-X as modelling framework (Polesel et al., 2016; Plósz et al., 2010, 2012, 2013). The framework
retransformation (e.g., deconjugation of human metabolites) (1), biotransformation (2) and cometary biotransformation (in the presence and absence of organic growth substrate) (3). The effect of diffusion into biofilm on the removal of pharmaceuticals from bulk aqueous phase was lumped in the biotransformation rate constants, as previously considered by Falás et al. (2012, 2013), Escolá Casas et al. (2015a) and Hapeshi et al. (2013). The cometabolic process was modelled as proposed by Plósz et al. (2012), using pseudo-first order kinetics with respect to micropollutant concentration and estimating two biokinetics: (i) the cometabolic biotransformation rate constant q_{bio} in the presence of the primary substrate and (ii) biotransformation rate constant k_{bio} in the absence of primary substrate. Accordingly, biotransformation kinetics of the cometabolic substrate (e.g., micropollutant) depend on the primary substrate concentration (e.g., organic matter expressed as readily soluble biodegradable COD, S_S) considered a co-limiting substrate. In Table 1 C_{LI} and C_{CJ} denote the aqueous concentration (ng L$^{-1}$) of the parent compound and the human metabolites undergoing deconjugation to the parent compound, respectively. The retransformation rate constant k_{Dec} (L g$^{-1}$ biomass d$^{-1}$) defines kinetics of retransformation to parent compound. Sorption processes were also included considering the sorption coefficient K_D (L g$^{-1}$ biomass$^{-1}$) which was calibrated using values from previous studies estimated under denitrifying condition when available (Table S2 in SI). As to the best of our knowledge values of K_D were not previously estimated for biofilm under denitrifying conditions, K_D measured for activated sludge were used in this study. The half-saturation coefficient for S_S, (K_S) in Table 1, was retrieved from Hiatt and Grady (2008). X_{biomass} (g$^{-1}$ biomass L$^{-1}$) denoted the biomass concentration in the MBBRs and growth of biomass on micropollutants was considered negligible.
Biotransformation constants k_{bio} (process 2, Table 1) were estimated from the measured data using least-square optimization without weighting in GraphPad Prism 5.0. Parent compound retransformation and cometabolism model (processes 1 and 3, Table 1) were implemented in AQUASIM 2.1d (Reichert et al., 1994) and the parameters were estimated using the secant method embedded.

Removal rate constants k (d^{-1}) were also estimated to compare the performance of the two MBBR systems, regardless of biomass concentration and sorption processes (Escolà Casas et al., 2015a,b).

For the chemicals following cometabolism model (and thus exhibiting two biokinetics), k was calculated considering the estimated q_{bio}. Differences between biotransformation rate constants of the two MBBRs were assessed by examining the overlap between standard deviations of the estimated values (Cumming et al., 2007).

2.5 DNA extraction, PCR amplification, sequencing and bioinformatics analysis.

One carrier was collected from each MBBR before the batch experiment and stored in a sterilized Eppendorf tube at -20 °C. Biomass was detached using a sterile brush (Gynobrush, Dutscher Scientific, United Kingdom) using tap water and consequently centrifuged (10000 rpm for 5 minutes) to remove excess water. DNA extraction, PCR amplification (using 16S rRNA bacteria gene primers) and Illumina sequencing were performed as described in Section S5 of the SI.

Taxonomic assignment and calculation of alpha diversity metrics (Shannon biodiversity and ACE extrapolated richness) were performed in mothur using the RDP reference taxonomy. Additional diversity indices were calculated according to Hill et al. (1973). Microbial evenness was estimated as H_1/H_0 as described in Johnson et al. (2015).
2.6 Continuous-flow experiment

The two MBBRs used for the present study were operated for over 4 months. The MBBRs were kept with a $\text{COD}_{\text{added}}/\text{NO}_3$-$\text{N}_{\text{influent}}$ ratio equal to 3 (close to the ratios used at the respective WWTPs) for the first two weeks of operation. The fraction of inert COD was taken into account (by subtracting it from the amount of available biodegradable COD) when planning experiments under carbon limitation. A hydraulic retention time (HRT) of 2 hours was set similar to the HRT used at the full-scale WWTPs. After two weeks of acclimatization, baseline carbon-dosage periods of $\text{COD}_{\text{added}}/\text{NO}_3$-$\text{N}_{\text{influent}}$ were alternated with short carbon-dosage periods (~5 days) to avoid biomass adaptation. Accordingly, concentrations of methanol and ethanol in the feed solutions were changed to test $\text{COD}_{\text{added}}/\text{NO}_3$-$\text{N}_{\text{influent}}$ ratios ranging from 1 to 5, while keeping constant HRT. This test phase lasted about 2 months. The $\text{COD}_{\text{added}}/\text{NO}_3$-$\text{N}_{\text{influent}}$ ratios and the dates are reported in the Table S3 (SI). The range of $\text{COD}_{\text{added}}/\text{NO}_3$-$\text{N}_{\text{influent}}$ ratios was chosen to assess carbon limiting condition at low $\text{COD}_{\text{added}}/\text{NO}_3$-$\text{N}_{\text{influent}}$ ratio and not far exceeding the stoichiometric $\text{COD}_{\text{added}}/\text{NO}_3$-$\text{N}_{\text{influent}}$ ratio needed for complete denitrification. The denitrification rate r_D (gN d$^{-1}$ m$^{-2}$) in continuous operation, was calculated for each carbon-dosage test by using the Equation S1 (Section S6, SI). Micropollutant removal efficiency (“measured removal” in Figure 4) was calculated as difference between inlet and outlet concentrations. Micropollutant removal efficiency during continuous operation (“predicted removal” in Figure 4) was predicted using removal rate constant k (d$^{-1}$) estimated during batch experiment according to Equation 1:

$$\text{Removal} \, (\%) = \left(1 - \left(\frac{1}{1+kr_{\text{HRT}}}
ight)\right) \cdot 100$$

Equation 1
3. Results and discussion

3.1 Batch experiment

3.1.1 Denitrification kinetics

Denitrification rates \(r_{\text{NO}_3^-, \text{N}} \) and \(k_{\text{NO}_3^-, \text{N}} \) were derived through linear regression of measured \(\text{NO}_3^- - \text{N} \) and \(\text{NO}_2^- - \text{N} \) concentration during batch experiment (Figure S5, SI). The ethanol-dosed reactor presented a higher surface-normalized denitrification rate \(r_{\text{NO}_3^-, \text{N}} \) (Table 2) than the methanol driven one, which is in agreement with previous studies (Santos et al., 2001; Christensson et al., 1994). This is likely due to the higher growth yield expected using ethanol thereby leading to higher biomass production per surface area in ethanol-dosed systems (Mokhayeri et al., 2009). On the other hand, denitrification rates \(k_{\text{NO}_3^-, \text{N}} \) normalized by biomass weight (higher for the ethanol-dosed reactor) were comparable in the two MBBRs, suggesting similar activity in terms of nitrate and nitrite removal in the two biofilms.

3.1.2 Micropollutant removal kinetics

Biotransformation kinetics of most of the investigated chemicals could be described with first-order equation (Table 1, process 2), thereby allowing for the estimation of removal rates \(k \) (d\(^{-1}\)) and pseudo-first order biotransformation rate constants \(k_{\text{bio}} \) (L g\(_{\text{biomass}}^{-1} \text{d}^{-1}\)). Abiotic transformation processes were previously investigated by the authors using plastic (polyethylene) carriers (AnoxKaldnes Z-carriers) and effluent wastewater (Torresi et al., 2016), suggesting no significant impact of abiotic processes (e.g., abiotic hydrolysis, volatilization, sorption onto plastic or glass) on the removal of several targeted micropollutants (Figure S9). Figures 1 and S1 summarize measured and simulated micropollutant concentration profiles during batch experiments.
The removals of erythromycin, clarithromycin, venlafaxine, carbamazepine, sulfamethoxazole and sulfamethizole was predicted using (i) a pseudo-first order biotransformation model (Table 1, process 2), with no interaction (inhibition/enhancement) between micropollutant and primary substrate; and (ii) additionally, a cometabolic model (Table 1, process 3), assuming that the turnover of the micropollutants is enhanced by the presence of primary substrate. Predictions with the two models are presented in Figure 1b–d using dashed lines and solid lines, respectively. The goodness of the two model fits (R^2) is summarized in Table S4 (SI). For erythromycin and clarithromycin, the cometabolic model ($R^2 > 0.9$) provided only for a marginal improvement of the fitting compared to the pseudo-first order biotransformation model ($R^2 > 0.8$), making it difficult to draw conclusion on the removal mechanism of these two compounds. However, the prediction of carbamazepine’s removal was significantly improved by adopting the cometabolic model ($R^2 > 0.9$) compared to the pseudo first-order biotransformation model ($R^2 < 0.5$) in both MBBRs. Cometabolic biotransformation of carbamazepine has been previously observed in aerobic and anoxic activated sludge (Plósz et al., 2012) with cometabolic biotransformation rate constant q_{bio} (1.2 L g$^{-1}$ d$^{-1}$ under anoxic condition), in close agreement with our results. Similarly, the removal of venlafaxine, sulfamethoxazole and sulfamethizole removal was better predicted using the cometabolic model ($R^2 > 0.9$). In Figure 1a, the measured and simulated concentration of soluble COD (sCOD), nitrate (NO$_3$-N) and nitrite (NO$_2$-N) and simulated readily biodegradable COD (S_S) are reported. For the abovementioned micropollutants, S_S limitation (approximately after 3 hours from the beginning of the experiment) corresponded to a change in biotransformation kinetics. Interestingly, in the ethanol-fed reactor, the modelled S_S limitation coincided with a significant decrease in the biotransformation rates of sulfamethoxazole and sulfamethizole (Figure 1d right), thereby leading to a rather low removal rate during the rest of the experiment. A similar effect for both compounds, though at lower extent, was observed for the methanol-dosed reactor.
Cometabolic transformation of trace chemicals was previously shown in suspended cultures under aerobic, anaerobic and anoxic conditions (Delgadillo-Mirquez et al., 2011; Fernandez-Fontaina et al., 2014; Płösz et al., 2010; Popat and Deshusses, 2011; Tran et al., 2013). Removal via cometabolism was previously observed for sulfamethoxazole in nitrifying (Kassotaki et al., 2016; Müller et al., 2013) and in aerobic and anoxic activated sludge (Alvarino et al., 2016), as well as for erythromycin and roxithromycin (Fernandez-Fontaina et al., 2014) in nitrifying activated sludge. Thus, our results support the hypothesis that the change of primary substrate availability can significantly impact the removal of a number of micropollutants as a result of cometabolic mechanisms under denitrifying conditions.

While the other sulfonamides followed cometabolic biotransformation, the removal of sulfadiazine was different. It could not be described with first-order kinetics ($R^2 < 0.2$ and < 0.4 for methanol- and ethanol-dosed MBBR respectively, dashed lines in Figure 1 e), due to the presence of its conjugate acetyl-sulfadiazine. Acetyl-sulfadiazine is the main human metabolite of sulfadiazine (Vree et al., 1995) and it has been previously observed to undergo de-acetylation (Zarfl et al., 2009), similarly to other acetyl-sulfonamides such as N^4-acetylsulfamethoxazole (Göbel et al., 2007). For these chemicals, a model including retransformation (deconjugation) of acetyl-sulfadiazine to sulfadiazine and concurrent biotransformation of sulfadiazine was used to estimate biotransformation rate constants k_{bio} for sulfadiazine and retransformation rate constant k_{Dec} for acetyl-sulfadiazine (Table 1, processes 1 and 2). However, this modelling approach did not adequately describe the concentration changes of sulfadiazine in any of the MBBRs ($R^2 < 0.2$, continuous lines in Figure 1 e):

For the methanol-dosed MBBR, acetyl- sulfadiazine was decreasing rapidly and sulfadiazine (being formed from acetyl-sulfadiazine) reached a maximum before being slowly further biotransformed
(Figure 1e left). In the ethanol-dosed MBBR, the acetyl-sulfadiazine was also rapidly removed and sulfadiazine concentration did never increase. Thus, for the ethanol-dosed reactor there is no indication for a deconjugation reaction of acetyl-sulfadiazine to sulfadiazine, while that is partially possible in the methanol-dosed one. Hence, the transformation of acetyl-sulfadiazine probably occurred partially following another metabolic pathway leading to the formation of other (undetected) transformation products. To test whether other pathways could be possible, the EAWAG-BBD pathway prediction systems (EAWAG-BBD, 2016) was used: It showed the possible transformation of acetyl-sulfadiazine to other transformation products, e.g., 2-aminopyrimidine and 4-aminobenzenesulfonic acid (Figure S6, SI). However, additional research on the different transformation pathways of acetyl-sulfadiazine in the two tested MBBRs is needed to substantiate this hypothesis. Further discussion on the biotransformation of acetyl-sulfadiazine and sulfadiazine in the two investigated MBBRs is reported in S4 in SI.

3.2. Influence of dosed carbon-source on microbial communities

We analyzed the biofilm microbial community of the two different MBBRs by 16S rRNA amplicon sequencing. After implementation of quality control measures, a total of 10847 high quality sequences were obtained with an average length of 460 bp. Subsequently, the number of reads of each sample was normalized to 4562 sequences and clustered into an average of 690 observed OTUs at 97% sequence similarity per sample (cut-off level of 3%). The facultative methanol-utilizing β-Proteobacteria, *Methylophilus*, was identified as the main relative abundance genus (24%) in the methanol-dosed reactor (Figure 2)—a result that closely agreed with previous studies on methanol-dosing denitrification systems (Baytshtok et al., 2009; Jenkins et al., 1987; Lu et al., 2014). For the biofilm grown in the ethanol-dosed reactor, *Arcobacter* and *Thiothrix* genus exhibited 23% and 9% relative abundance, respectively. *Arcobacter* was previously identified in
full-scale MBBRs treating municipal wastewater (Biswa and Turner, 2012). Thiothrix is known to
degrad sulfur containing compounds and it was suggested to influence the removal of sulfa-based
antibiotics in membrane bioreactors (Xia et al., 2012). Microbial community diversity in the two
MBBRs was evaluated by comparing Shannon diversity and evenness indices. We observed no
major difference in the methanol- and ethanol-dosed reactors between Shannon diversity indices
(4.153 ± 0.05 and 4.184 ± 0.03, mean and standard deviation, respectively) and evenness (0.092 ±
0.002 and 0.095 ± 0.001, respectively) (Figure 2, Table S5 of the SI). Similar values of Shannon
diversity indices were found previously in aerobic nitrifying MBBRs (Bassin et al., 2015; Torresi et
al., 2016). On the other hand, the extrapolated taxonomic richness ACE in the methanol- and
ethanol-dosed reactors were estimated to be 999 ± 103 and 781 ± 87 OTUs, respectively, thus
suggesting slightly differences between the microbial richness of the two biofilms (Figure 2).
Similar evidence was obtained from nitrite reductase nirK- and nirS-based restriction fragment
length polymorphism (RFLP) analysis on activated sludge supplemented with methanol or ethanol,
with higher diversity in terms of richness of nirS genotypes observed in the methanol-dosed sludge
(Hallin et al., 2006).

3.3. Influence of dosed carbon source on micropollutants biotransformation
A comparative assessment of the estimated k_{bio}, q_{bio} and k_{Dec} values for the methanol- and ethanol-
dosed MBBRs is shown in Figure 3. For 9 compounds the estimated values of biotransformation
and cometabolic transformation rate constants (k_{bio} and q_{bio}) for the methanol-dosed MBBR were
higher (1.5 to 2.5-fold) than those from the ethanol-dosed reactor (namely atenolol, citalopram,
trimethoprim, ibuprofen, iopromide, metoprolol, iohexol, iomeprol, sotalol, venlafaxine). Conversely, the sulfonamides acetyl-sulfadiazine, sulfamethoxazole, sulfamethizole were
transformed at higher rate constants (up to 2.8-fold) in the ethanol-dosed reactor. The remaining 10
compounds behaved similarly in both reactors. We further classified the biotransformation potential of the targeted micropollutants of the two denitrifying MBBRs in three groups (Table 3): easily degradable \((q_{\text{bio}} \text{ and } k_{\text{bio}} > 2)\), moderately degradable \((0.2 \leq k_{\text{bio}} \text{ and } q_{\text{bio}} \geq 2)\) and hardly degradable \((k_{\text{bio}} \text{ and } q_{\text{bio}} < 0.2)\).

We observed that some of the targeted chemicals classified as easily degradable (propranolol, atenolol, citalopram) presented removal rate constant \(k\) \((d^{-1})\) above 10 \(d^{-1}\) and similar between the two MBBRs (Table 3). As the two MBBRs presented different amount of biomass (Table 2) during batch experiment, the lower values of \(k_{\text{bio}}\) for the high degradable compounds in the ethanol-dosed reactor could mainly derive from the normalization to a higher amount of biomass prevailing in the ethanol-dosed reactor.

On the other hand, a number of moderately degradable chemicals (i.e., X-ray contrast media, ibuprofen, metoprolol and sotalol) were associated to \(k\) and \(k_{\text{bio}}\) values approximately two times higher in the methanol-dosed than in the ethanol-dosed reactor. The two biofilm microbial communities likely played an important role on the biotransformation of these chemicals. As previously described (Section 3.2), the higher microbial richness observed in the biofilm enriched with methanol could have likely contributed to the overall higher micropollutant biotransformation in the methanol-dosed MBBR. Similarly, positive associations between biodiversity and the rates of specific micropollutant biotransformations were observed in activated sludge (Johnson et al., 2015; Stadler and Love, 2016) and MBBR (Torresi et al., 2016).

No major differences were observed between the biotransformation rate constants \(k_{\text{bio}}\) of the hardly degradable compounds (diatrizoic acid, iopamidol, diclofenac and phenazone) in the two MBBRs, suggesting that their removal is neither biomass nor carbon source dependent.
3.4 Highlighted compounds

Among the X-ray contrast media, iopamidol and diatrizoic acid were found to be recalcitrant in both reactors during batch experiment (Figure S1, SI), while iomeprol, iohexol and iopromide were found moderately degradable (Figure 1d). These results are in agreement with previous studies conducted with aerobic MBBRs (Escolà Casas et al., 2015a; Hapeshi et al., 2013). Our results show that denitrifying MBBRs could effectively remove iomeprol, iohexol and iopamidol, with k_{bio} comparable to studies on activated sludge (Joss et al., 2006; Onesios et al., 2009).

The analgesic ibuprofen exhibited lower biotransformation rate constants (Table 3) than the ones obtained in previous studies under aerobic conditions (Escolà Casas et al., 2015a,b; Falâs et al., 2012; Torresi et al., 2016) as ibuprofen is easily degraded under aerobic conditions. Other analgesics, i.e., phenazone and diclofenac, have also previously observed to be hardly degradable in both aerobic MBBR and activated sludge (Escolà Casas et al., 2015a; Joss et al., 2006). Nevertheless, k_{bio} values for diclofenac were reported to be higher under nitrifying conditions in both biofilms and activate sludge (Torresi et al., 2016; Tran et al., 2009) than as obtained in this study under denitrifying conditions, thus indicating limited diclofenac removal under anoxic conditions.

In the batch experiment, citalopram was fully removed in both reactors within 0.4 days (Figure 1b), resulting in a k_{bio} of 2.3 L d$^{-1}$ g$^{-1}$ biomass$^{-1}$ (Table 3). Similar biotransformation kinetics was found in aerobic MBBR (Escolà Casas et al., 2015a) and sludge (Suárez et al., 2012), while anoxic CAS showed lower kientics compared to the one obtained in the anoxic MBBRs of this study. At HRTs higher than 0.4 days, a removal efficiency of 65% was achieved in a complete autotrophic nitrogen removal process (Alvarino et al., 2015). In our study, predicted removal efficiency of citalopram (at HRT of 0.4 days) was calculated to be >80% in both reactors (Equation 1) during continuous-flow...
operation. Furthermore, in denitrifying activated sludge reactors a k_{bio} of 0.5 L d$^{-1}$ g$_{\text{biomass}}^{-1}$ was obtained for citalopram (Suárez et al., 2010) and a removal of 44% under anoxic condition (Suárez et al., 2010).

The removal of carbamazepine and venlafaxine (with q_{bio} ranging between 1.1 and 1.9 L g$^{-1}$ d$^{-1}$) followed the kinetics described by the cometabolic model in our study, as suggested previously (see Section 3.1.2). With respect to biotransformation kinetics, only one study showed cometabolic biotransformation rate constants of up to 2 L g$^{-1}$ d$^{-1}$ for carbamazepine in aerobic and anoxic activated sludge (Plósz et al., 2012). On the other hand, biotransformations rate constants equal to 0.9 L g$^{-1}$ d$^{-1}$ in aerobic MBBR have been reported (Escolà Casas et al., 2015a). In our study we thus observed 30% removal of carbamazepine during batch experiments, which is in agreement with previous studies on MBBR (Escolà Casas et al., 2015a) and activated sludge (Dawas-Massalha et al., 2014; Luo et al., 2014; Zupanc et al., 2013). Thus, low removal of carbamazepine in the tested MBBRs in batch and continuous-flow experiments may be attributed to the limited transformation in the absence of primary substrates.

The biotransformation of the targeted sulfonamides was enhanced in the ethanol-dosed MBBR (up to 1.8-fold higher). As the ethanol-dosed MBBR showed the highest denitrification rates ($r_{\text{NO}_3,2-N}$) during the batch experiment, the removal of the targeted sulfonamides may be associated with primary metabolism rather than biofilm composition (i.e., biodiversity). Interestingly, negative correlation between biotransformation kinetics of sulfonamides and biodiversity was also observed in nitrifying MBBRs, and their removal was enhanced at higher nitrification rates in thin biofilms (Torresi et al., 2016). Similarly, the removal of sulfamethoxazole has been previously shown to be dependent on the primary metabolism under anoxic condition in activated sludge, while negligible
The effect of primary substrate was observed under nitrifying condition (Alvarino et al., 2016). This indicates that sulfonamide removal may be influenced by primary metabolism in both nitrifying and denitrifying conditions.

Finally, while k_{bio} of clarithromycin and erythromycin was found comparable to studies on aerobic MBBRs (Escolà Casas et al., 2015a), trimethoprim removal occurred with a higher k_{bio} under denitrification conditions than in aerobic MBBRs (Escolà Casas et al., 2015a; Falâs et al., 2013).

3.5 Impact of carbon dosing during continuous-flow operation

A continuous-flow experiment tested different dosing conditions of organic carbon in terms of primary substrate (methanol or ethanol) and influent loading (variable COD$_{added}$/NO$_3$-N$_{influent}$ ratio) without adaptation of the biofilm as described in Section 2.6 (details in Section S7, SI). The removal efficiency of micropollutants did not present any correlation with the tested COD$_{added}$/NO$_3$-N$_{influent}$ ratios and did not significantly differ between the two types of carbon sources (Figure S8, SI). Notably, only trimethoprim removal increased with increasing carbon availability in the ethanol-dosed reactor.

Both MBBR systems exhibited denitrification rates directly proportional to the COD$_{added}$/NO$_3$-N$_{influent}$ ratio (Figure S3, SI). However, at COD$_{added}$/NO$_3$-N$_{influent}$ ratios higher than 4.8 and 3.8 for the methanol- and the ethanol-dosed MBBR, respectively, denitrification rates did not increase and similar effluent concentrations of COD were measured for both MBBRs (estimated to be equal to the inert soluble COD in the influent medium) (Figure S4, SI). This indicates that excess COD dosing during continuous-flow operation could have been used for internal storage rather than as primary energy source. This has been previously observed under substrate feast-famine cycles in
continuously operated activated sludge (Beun et al., 2000). Similarly, feast-famine conditions associated to change from high to low $\text{COD}_{\text{added}}/\text{NO}_3\text{-N}_{\text{influent}}$ ratio during continuous-flow operation might have influenced the performance of the two post-denitrifying MBBRs in this study.

Furthermore, the continuous-flow operation experiment was carried out at HRT of 2 h, simulating HRTs typically operated in denitrification stages in full scale WWTPs, and which might have been too short to observe differences in the removal of micropollutants. In fact, the batch experiment showed that the removal of most of the targeted micropollutants (with the exception of the compounds removed through cometabolism) continued after 2 h from the start of the experiment (Figure 1), suggesting a possible removal enhancement at higher HRT. Accordingly, the increase of HRT has been found to enhance the removal of a number of micropollutants in activated sludge (Maurer et al., 2007; Petrie et al., 2014) and MBBR (Mazioti et al., 2015).

3.6. Comparison of the batch and the continuous-flow experiment

Figure 4 compares the measured removal efficiencies under continuous–flow operation with the predicted removal efficiencies. The predicted values were calculated using the removal rates (k) estimated in the batch experiment according to first-order kinetics (Table 3). As presented in Figure 4, the removal rates (k) estimated from batch experiments allowed predicting of the elimination of most of the targeted compounds in continuous-flow operation. However, predicted removal efficiencies did not match the measurements for a number of micropollutants, i.e. sulfamethoxazole, carbamazepine, atenolol and trimethoprim. A possible explanation for this discrepancy might be that the removal rates (k) used to predict the removals were obtained by fitting the first order kinetics, while in reality for some compounds cometabolic or deconjugation approaches are more appropriate.
As the biotransformation kinetics of most of the compounds could be described with a first-order equation (Table 1, process 2 and Figure 1), it could be predicted that an HRT of 2 h (0.083 d) would only allow a partial removal of the easily biodegradable compounds (e.g., atenolol, trimethoprim and citalopram) in the continuous-flow experiment (Figure 4). For the compounds following this type of biotransformation kinetics, it could be predicted (Equation 1, Section 2.6) that the increase of the HRT up to 6 hours (0.25 d) would improve the removal efficiency by about 20%, achieving high removals in both reactors (>70%) for all the compounds listed as “easily biodegradable” in Table 3.

4. Conclusions

In order to investigate the removal of micropollutants in denitrifying Moving Bed Biofilm Reactors (MBBRs), two laboratory-scale MBBRs were tested using nitrified effluent wastewater dosed with methanol and ethanol, respectively. The following conclusions have been drawn:

- According to the batch experiment, all targeted micropollutants showed biotransformation rate constants over 0.2 L d\(^{-1}\) g\(_{\text{biomass}}\)\(^{-1}\) under denitrifying condition, except for diclofenac, phenazone, diatrizoic acid and iopamidol, which were found to be recalcitrant. Accordingly, it has been suggested that that HRTs of approximately 6 h could considerably enhance the removal of most of the targeted micropollutants.

- The biotransformation rate constants in the methanol-dosed MBBR were 1.5 to 2.5-fold higher than in the ethanol-dosed MBBR for 9 out of the 22 spiked pharmaceutical. Oppositely, the sulfonamides acetyl-sulfadiazine, sulfamethoxazole, sulfamethizole were transformed at higher
biotransformation rate constants in the ethanol-dosed MBBR. The rest of the compounds presented similar biotransformation in both reactors.

- The removal of venlafaxine, carbamazepine, sulfamethoxazole and sulfamethizole was most likely enhanced by the presence of organic growth substrates in the beginning of the batch experiment, suggesting cometabolic removal for these compounds.

- The continuous-flow experiment conducted at conditions typically operated in full-scale WWTPs (i.e., HRT =2h) did not show significant correlation between the removal efficiency of micropollutants and the increase of carbon dosage or type.

5. Acknowledgements

This research was supported by (i) the AUFF grant: advanced water purification using bio-inorganic nanocatalysts and soil filters; and (ii) MERMAID: an Initial Training Network funded by the People Programme (Marie-Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement n. 607492. The authors are thankful for technical assistance provided by VA SYD at Sjölunda and Klagshamn (Malmö) wastewater treatment plants.
References

Fischer, K., Majewsky, M., 2014. Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Applied Microbiology and
Biotechnology 98 (15), 6583–97.

Implications on micropollutant removal. Environmental Science and Technology. 50 (17), 9279–9288

Web references

Table 1. Stoichiometric (Gujer) matrix of the ASM-X (which includes processes such as parent compound retransformation, biotransformation and the cometabolic model) and two-step denitrifying model used in this study.

Stoichiometric coefficients: $A = (1-Y_H)/(1.143 \times Y_H)$; $B = (1-Y_H)/(1.713 \times Y_H)$; $F =$ ratio between molecular mass of parent compound and metabolite undergoing deconjugation. Parameters and state variables for determination of micropollutant kinetics are described in the main text. Parameters and state variables for the denitrifying model are defined in Table S1 in Supplementary Information. For estimation of denitrification kinetics, biomass concentration X_H is expressed in gCOD L$^{-1}$; *Due to short duration of the batch experiment and low S/X ratio, negligible biomass growth was assumed.

<table>
<thead>
<tr>
<th>(i) Component \rightarrow i</th>
<th>C_{LI}</th>
<th>C_{CJ}</th>
<th>S_{NO3}</th>
<th>S_{NO2}</th>
<th>S_{N2}</th>
<th>S_s</th>
<th>$X_{biomass}$</th>
<th>Process rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j) Processes ↓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1) Parent compound retransformation</td>
<td>F</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$k_{ptrans} C_{LI} X_{biomass}$</td>
<td>$1 + K_D X_{biomass}$</td>
</tr>
<tr>
<td>(2) Biotransformation</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$k_{biotrans} C_{LI} X_{biomass}$</td>
<td>$1 + K_D X_{biomass}$</td>
</tr>
<tr>
<td>(3) Cometabolism</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$q_{bio}(S_S/(S_S + K_{q})) + k_{bioc} C_{LI} X_{biomass}$</td>
<td></td>
</tr>
</tbody>
</table>

Denitrification kinetics

$R1$	$-A + A -1/Y_H$	$\frac{S_S}{S_{NO3}}$
	$\frac{S_S}{K_{S1} + S_S K_{H2} X_H}$	
	$\frac{S_S}{S_{NO2}}$	

| $R2$ | $-B + B -1/Y_H$ | $\frac{S_S}{K_{S2} + S_S K_{H2} X_H}$ |
| | $\frac{S_S}{S_{NO2}}$ |

R1: Anoxic growth of heterotrophs, reducing nitrate to nitrite ($NO_3^- \rightarrow NO_2^-$)
R2: Anoxic growth of heterotrophs, reducing nitrite to nitrogen ($NO_2^- \rightarrow N_2$)
Table 2. Values of denitrification rates normalized by carriers surface area ($r_{\text{NO}_3,2-N}$) and biomass concentration ($k_{\text{NO}_3,2-N}$) measured during batch experiments. SA: total surface area of carriers in the MBBRs.

<table>
<thead>
<tr>
<th>MBBR</th>
<th>SA (m2)</th>
<th>Biomass (g L$^{-1}$)</th>
<th>$r_{\text{NO}_3,2-N}$ (g NO$_3,2-N$ m$^{-2}$ d$^{-1}$)</th>
<th>$k_{\text{NO}_3,2-N}$ (g NO$_3,2-N$ g biomass$^{-1}$ d$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methanol-dosed</td>
<td>0.2</td>
<td>3.28 ±0.93</td>
<td>1.77 ± 0.92</td>
<td>0.11 ± 0.06</td>
</tr>
<tr>
<td>Ethanol-dosed</td>
<td>0.2</td>
<td>4.20 ±0.25</td>
<td>2.32 ± 0.62</td>
<td>0.11 ± 0.03</td>
</tr>
</tbody>
</table>
Table 3. Values of \(k \), \(k_{\text{bio}} \), \(q_{\text{bio}} \) and \(k_{\text{Dec}} \) estimated for the two MBBRs from the data obtained in the batch experiments. “\(k \)” defines the removal rate constant obtained following single first-order kinetics and not accounting for biomass concentration and sorption processes. “\(k_{\text{bio}} \)” and “\(q_{\text{bio}} \)” refer to removal rate constants normalized for biomass and sorption processes. Unindexed values correspond to “\(k_{\text{bio}} \)” (Biotransformation process, Table 1, Process 2). Index (1) indicates the case of retransformation rate constant “\(k_{\text{Dec}} \)” of acetyl-sulfadiazine to sulfadiazine (Transformation process, Table 1, Process 1). Index (2) refers to the cometabolic rate constant “\(q_{\text{bio}} \)” (Cometabolism, Table 1, Process 3). The following abbreviations are used: n.d. = not degradable, SD = standard deviation.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Methanol-dosed MBBR</th>
<th>Ethanol-dosed MBBR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(k \pm SD) (d(^{-1}))</td>
<td>(k_{\text{bio}}, q_{\text{bio}} \pm SD) (L d(^{-1})g(^{-1}) biomass(^{-1}))</td>
</tr>
<tr>
<td>Easily degradable; (k_{\text{bio}}, q_{\text{bio}} > 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propranolol</td>
<td>17.8 ± 0.2</td>
<td>12.9 ± 1.3</td>
</tr>
<tr>
<td>Atenolol</td>
<td>17.8 ± 0.2</td>
<td>6.4 ± 0.6</td>
</tr>
<tr>
<td>Citalopram</td>
<td>14.2 ± 0.9</td>
<td>4.3 ± 0.5</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>13.6 ± 0.1</td>
<td>4.1 ± 0.4</td>
</tr>
<tr>
<td>Acetyl-sulfadiazine</td>
<td>12.1 ± 0.3</td>
<td>3.7 ± 0.4 (1)</td>
</tr>
<tr>
<td>Moderately degradable; 0.2 ≤ (k_{\text{bio}}, q_{\text{bio}} ≤ 2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ibuprofen</td>
<td>4.6 ± 0.1</td>
<td>1.4 ± 0.4</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>2.9 ± 0.7</td>
<td>1.0 ± 0.2 (c)</td>
</tr>
<tr>
<td>Iopromide</td>
<td>3.0 ± 0.1</td>
<td>0.9 ± 0.1</td>
</tr>
<tr>
<td>Metoprolol</td>
<td>2.6 ± 0.1</td>
<td>0.8 ± 0.2</td>
</tr>
<tr>
<td>Iohexol</td>
<td>2.3 ± 0.1</td>
<td>0.7 ± 0.2</td>
</tr>
<tr>
<td>Iomeprol</td>
<td>2.1 ± 0.1</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Sotalol</td>
<td>1.3 ± 0.1</td>
<td>0.5 ± 0.1</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>1.5 ± 0.1</td>
<td>0.5 ± 0.1 (c)</td>
</tr>
<tr>
<td>Venlafaxine</td>
<td>6.0 ± 0.1</td>
<td>1.9 ± 0.2 (c)</td>
</tr>
<tr>
<td>Carbamazepine</td>
<td>3.9 ± 0.1</td>
<td>1.2 ± 0.3 (c)</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>5.6 ± 0.8</td>
<td>1.7 ± 0.2 (c)</td>
</tr>
<tr>
<td>Sulfamethizole</td>
<td>5.8 ± 0.9</td>
<td>1.8 ± 0.2 (c)</td>
</tr>
<tr>
<td>Sulfadiazine</td>
<td>1.9 ± 0.2</td>
<td>0.6 ± 0.1</td>
</tr>
<tr>
<td>Hardly or non-degradable; (k_{\text{bio}}, q_{\text{bio}} < 0.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diatrizoic acid</td>
<td>0.3 ± 0.1</td>
<td>0.1 ± 0.02</td>
</tr>
<tr>
<td>Iopamidol</td>
<td>0.2 ± 0.1</td>
<td>0.1 ± 0.02</td>
</tr>
</tbody>
</table>
Figures

Figure 1. Batch experiment results for selected compounds. On the X-axes “Time (d)" designates the sampling time-points. On the Y-axes “Relative concentration" refers to concentrations normalized to the measured starting concentrations. Symbols refer to measurements while lines refer to modelling. [a] Macro-pollutants. Readily biodegradable substrate (Ss) is only modelled. [b-d] Solid lines: modelled concentrations assuming cometabolism (process 3, Table 1). Dashed lines: concentrations according to the biotransformation model (process 2, Table 1). [e] Solid lines: biotransformation-retransformation model (process 1, Table 1) assuming deconjugation of acetyl-sulfadiazine to sulfadiazine. Dashed lines: biotransformation model (process 2, Table 1). [f] Solid lines: concentrations according to the biotransformation model (process 2, Table 1).
Figure 2. Order-level taxonomic classification of 16S rRNA amplicons of the two MBBRs. The three most abundant orders are reported also at genus level (Methylophilus, Arcobacter and Thiotrix). Taxa abundance is expressed in percentage (second left axis). Alpha-diversity is measured as ACE extrapolated richness (first left axis) and Shannon diversity index (right axis).
Figure 3. Comparative assessment between methanol-dosed reactor (x-axes) and the ethanol-dosed reactor (y-axes) of the removal kinetics k_{bio}, q_{bio}, and k_{Dec} estimated for all targeted compounds (a) and for compounds with biokinetics ranging between 0 and 2 $L \cdot g^{-1} \cdot d^{-1}$ (b). Dashed lines (2:1 and 1:2) delimit area where biokinetics are 2-folder higher or lower than other estimated values. In the legend, when not specified, symbols refer to estimated k_{bio}.

(a) (b)
Figure 4. Measured mean removal efficiency of micropollutants of all the tested COD\textsubscript{added}/NO\textsubscript{3}-N influent ratios (presented in Table S3, SI) during the whole continuous-flow experiment, taking into account that no correlation was found between micropollutant removal and COD\textsubscript{added}/NO\textsubscript{3}-N influent ratios. The measured removals were calculated as difference between influent and effluent concentration, expressed as a percentage. Predicted removal was based on removal rate constants k (d-1) derived from batch experiments, calculated according to Equation 1 in Section 2.6.