A Failure Locus for Hydrogen Assisted Failure

Fuentes-Alonso, Sandra; Harris, Zach D.; Burns, James T.; Martínez Pañeda, Emilio

Published in:
Proceedings of the 30th Nordic Seminar on Computational Mechanics (NSCM-30)

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
A FAILURE LOCUS FOR HYDROGEN ASSISTED FAILURE

SANDRA FUENTES-ALONSO*, ZACH D. HARRIS†, JAMES T. BURNS†
AND EMILIO MARTÍNEZ-PAÑEDA††

*Department of Construction and Manufacturing Engineering
Universidad de Oviedo
Campus de Viesques, 33203 Gijón, Spain

†Center for Electrochemical Science and Engineering
Department of Materials Science and Engineering, University of Virginia
395 McCormick Road, Charlottesville, VA 22904, USA

††Department of Mechanical Engineering
Technical University of Denmark
2800 Kgs. Lyngby, Denmark

e-mail: mail@empaneda.com - Web page: http://www.empaneda.com

Abstract. We investigate cracking in the presence of hydrogen by means of a hybrid experimental-numerical approach. Slow strain rate tests are conducted in a Nickel superalloy under different environmental conditions. Finite element analysis of crack initiation and subsequent growth is modeled by means of a hydrogen-dependent traction separation law. A special control algorithm is employed to overcome numerical instabilities intrinsically associated with cohesive zone formulations. The fracture energy is degraded by means of an experimentally-motivated hydrogen degradation relation. Numerical results provide important insight into the failure process, enabling to identify critical values of hydrogen concentration and remote stresses that trigger cracking. The work builds upon previous works by the authors1,2 and brings important insight into the technologically important problem of hydrogen assisted cracking.

Keywords: Hydrogen embrittlement, Cohesive zone models, Fracture, Finite element analysis.

REFERENCES
