Uncertainty Analysis for the Parameterization of Glycrons

A review of the 4C association scheme for mono-ethylene glycol (MEG)

Francois Kruger

Supervised by: Nicolas von Solms & Georgios Kontogeorgis

Technical University of Denmark

Background

• Collaboration between DTU-CERE and Statoil ASA
• Natural gas dehydration: Statoll Subsea Factory TM and Gas-2-Pipe TM
• Important Sales Gas specifications:
 - Hydrocarbon dew point: cricondenbar 105-110 bar
 - H2O dew point: 32 ppm
 - Glycol in the gas phase 8 l/m3
• Phase equilibria measurements and thermodynamic modelling of petroleum fluids relevant to subsea processing

Results and Discussion

Use of pure component experimental data versus pseudo data

• Accuracy of MEG liquid density prediction sacrificed by incorporating the LLE criterion
• MEG vapour pressure data exhibits significantly higher variance than the DIPPR correlation suggests
• Bootstrapped parameter plots show high degree of correlation when fitting to DIPPR

Uncertainty analysis: new CPA-4C MEG parameters

• Literature parameters do not match well with bootstrapped mean parameter estimator
• Mean of the average absolute error and 95% confidence interval over 1500 optimization runs:

<table>
<thead>
<tr>
<th>Literature</th>
<th>Parameter</th>
<th>Literature</th>
<th>Parameter</th>
<th>Literature</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>51.40</td>
<td>0.6744</td>
<td>2532</td>
<td>1.96</td>
<td>0.6360</td>
<td></td>
</tr>
<tr>
<td>14.10</td>
<td>2.44</td>
<td>2376</td>
<td>2.44</td>
<td>3.01</td>
<td></td>
</tr>
<tr>
<td>0.6744</td>
<td>15.4</td>
<td>0.6744</td>
<td>15.4</td>
<td>0.6744</td>
<td></td>
</tr>
</tbody>
</table>

Application for Simplified NG Dehydration Systems

• Improved correlation of the MEG entrained into CH4-rich phase
• Prediction is best at both high temperature and high pressure
• Low temperature anomalies may be due to experimental difficulties

Conclusions

• Excess (unnoticed) parameter correlation avoided by using raw experimental data in optimization routines
• New MEG 4C parameters provide improved description for simplified natural gas dehydration applications
• Accurate prediction of all components in all phases remains challenging
• Discrepancies highlight need for further experimental data and model development

Future Work

• Generation of new experimental data for additional model evaluation
• Apply uncertainty analysis to newly proposed association schemes
• Inclusion of tri-ethylene glycol (TEG) data and modelling
• Modelling of natural gas dehydration in Aspen

Acknowledgement

The authors wish to thank Statoil for their financial support of this research, which is part of the CHGP (Chemical in Gas Processing) project.