Carbon dioxide not suitable for extinguishment of smouldering silo fires: static electricity may cause silo explosion

Hedlund, Frank Huess

Published in:
Biomass & Bioenergy

Link to article, DOI:
10.1016/j.biombioe.2017.11.009

Publication date:
2018

Document Version
Early version, also known as pre-print

Link back to DTU Orbit

Citation (APA):
Carbon dioxide not suitable for extinguishment of smouldering wood pellet fires: static electricity may ignite pyrolysis gasses leading to silo explosion – hazard widely under-appreciated
Frank Huess HEDLUND  
Technical University of Denmark, (DTU/Compute) DK-2800 Kongens Lyngby, Denmark. E-mail fhue@dtu.dk  
COWI; Parallelvej 2, DK-2800 Kongens Lyngby, Denmark. E-mail: fhhe@cowi.dk

*corresponding address

**Abstract**

Smouldering fires in wood pellet silos are not uncommon. The fires are often difficult to deal with and extinguishment is a lengthy process. Injection of inert gasses to prevent oxygen from reaching the smouldering fire zone and suppress combustion is a new firefighting strategy. This article argues that injection of inert carbon dioxide into the silo headspace is unsafe. Carbon dioxide is generally available as a liquid under high pressure. When discharged, small particles of dry ice are formed. The rapid flow of particles can generate considerable amounts of static electricity, which can act as a source of ignition if ignitable pyrolysis gasses are present. This article discusses a serious wood pellet smouldering fire and silo explosion in Norway in 2010, which took place when firefighters discharged portable CO2 fire extinguishers into the headspace. The attempt to suppress the fire may have ignited pyrolysis gasses. The article examines selected guidelines, standards, popular wood pellet handbooks and other literature and argues that the electrostatic hazard is widely under-appreciated. In the past, major explosions have been attributed to electrostatic ignition of flammable vapours during the release of CO2 for fire prevention purposes. There is evidence to suggest that those early lessons learned have at least partly passed out of sight.

**Keywords:**  
wood pellets; silo; smoldering fire; explosion; carbon dioxide; static electricity;

**Highlights:**  
- deep-seated fires in wood pellets generate pyrolysis gasses  
- flammable pyrolysis gasses can travel and accumulate, e.g. in the silo headspace  
- fires cannot be fought with water, novel approaches call for injection of inert gas  
- injection of carbon dioxide may generate static electricity, leading to silo explosion  
- industry standards and popular pellet handbooks largely silent on the hazard
# Table of Contents

1. **Introduction**
   1.1 Smouldering fires in wood pellet silos
   1.2 Pyrolysis gasses
   1.3 Water unsuitable for smouldering fires
   1.4 Alternative firefighting strategies

2. **Material and methods**

3. **Theory**
   3.1 Carbon dioxide and static electricity
   3.2 Portable CO\(_2\) extinguishers
   3.3 Past explosions caused by the discharge of portable CO\(_2\) extinguishers
   3.4 The Bitburg disaster
   3.5 Summary

4. **The 2010 silo explosion at Hallingdal**
   4.1 The facility's fire history
   4.2 The silo
   4.3 Smouldering fire
   4.4 Explosion
   4.5 Investigation
   4.6 Source of ignition

5. **Discussion**
   5.1 Clarification of terms: Inerting and purging
   5.2 German standards
   5.3 NFPA standards
   5.4 Special report on US agricultural silos
   5.5 Swedish contributions
<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Conclusion</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>Conflicts of interest</td>
<td>19</td>
</tr>
<tr>
<td>8</td>
<td>Acknowledgements</td>
<td>20</td>
</tr>
<tr>
<td>9</td>
<td>References</td>
<td>21</td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Smouldering fires in wood pellet silos

This paper is concerned with unintended ignition of pyrolysis gasses produced by a smouldering fire in a wood pellet storage confinement. Although a smouldering fire may start for several reasons, two causal pathways appear to be common:

- Freshly produced wood pellets may self-heat because energy is liberated from chemical oxidation, moisture absorption or biological processes. Heat loss is largely a surface-based phenomenon and because of the low surface-to-volume ratio of a large pile, any process that generates heat will slowly increase the temperature inside the pile. Pockets may form where the temperature of the contents can rise to the temperature necessary to produce spontaneous ignition. This produces an oxygen deficient smouldering fire deep inside the pile.

- Wood pellets are friable and generate dust and fines when handled in the logistics chain. This dust ignites easily, e.g. from overheated electric motors or conveyor bearings, or from mechanical friction heat between conveyor belts and accumulated pellets, fines and/or dust. Small pieces of smouldering material are difficult to detect and embers may migrate in the band conveyor systems and start smouldering fires in the storage silos.

A small smouldering fire deep inside a storage silo is difficult to detect and may develop into massive storage fires and cause considerable damage to process equipment and property [1].

1.2 Pyrolysis gasses

Before developing into an open surface fire, an oxygen deficient smouldering fire generates flammable pyrolysis gasses rich in e.g. toxic and flammable carbon monoxide that can travel and accumulate. Pyrolysis gases may create an ignitable atmosphere in the headspace of the silo. An internal explosion may result when the combustion zone eventually reaches the surface layer or if a source of ignition is present in the headspace. This paper is specifically concerned with potential sources of ignition introduced by firefighters.
1.3 Water unsuitable for smouldering fires

Surface fires in wood pellets can be fought with water, which should be applied gently not to kick up dust and create conditions for a dust explosion. Applying water to a smouldering fire located deep inside a pile however, presents major practical challenges however. In addition, the usage of water has serious drawbacks. Most pellets are hygroscopic and expand when absorbing moisture. When fully saturated with water, compressed pellets may expand about 3.5 times. The wet pellets are sticky and expansion forces may lead to agglomeration and compaction creating a very hard and compact plug.

This creates difficulties during clean-up when the hard material must somehow be broken up for removal, at times requiring a jack hammer. Worse, the expansion may force agglomerations of pellet material to adhere to the walls of the silo, creating hangings or arch formation inside the silo. The sheer force of the expansion may even break the silo walls [1]. Hangings may expose the silo walls to uneven loads for which they are not designed. There are examples of silos that have tipped over due to excessive application of water during firefighting [2].

1.4 Alternative firefighting strategies

The challenging nature of fighting fires in wood pellet silo and the drawbacks of using water have led research programmes to explore alternative firefighting strategies, particularly the injection of inert gasses. Inert gasses have the advantages of depleting the oxygen available for combustion, of quenching the pyrolysis and of lowering the risk of ignition of pyrolysis gasses in the headspace. The most commonly available inert gasses in large quantities are nitrogen and carbon dioxide.
2 Material and methods

This article examines a case report of a serious silo explosion in Norway in 2010. The silo, which held freshly made wood pellets, experienced a deep seated smouldering fire. The explosion took place when firefighters attempted to quench the headspace using portable CO$_2$ fire extinguishers. This article argues that electrostatic discharges from the release of carbon dioxide may have ignited pyrolysis gasses in the headspace, resulting in the explosion.

The article examines major standards, guidelines, recent editions of popular pellet handbooks and other literature, versions as per mid-2016. The article presents examples where the hazard is not stated; where the standard, guideline or recommended practice give potentially ill-advised recommendations, and where the absence of a warning may have serious consequences.
3 Theory

3.1 Carbon dioxide and static electricity
The ability of carbon dioxide fire to generate static electricity has been known for almost a century. Electrification effects associated with sliding contact between solid CO\textsubscript{2} and metal surfaces were reported as early as 1925. German experiments in the 1950s confirmed that static charging does not occur during the release of purely gaseous CO\textsubscript{2}, that charging associated with the flow of liquid CO\textsubscript{2} is negligible and that strong charging occurs only when solid CO\textsubscript{2} particles are present. Butterworth and Dowling [3] provide a good overview of this early work.

3.2 Portable CO\textsubscript{2} extinguishers
A portable CO\textsubscript{2} extinguisher comprises a CO\textsubscript{2} storage cylinder, a control valve, a delivery tube and a directional horn. The storage cylinder contains liquid CO\textsubscript{2} under its saturated vapour pressure, which at 20°C is 5.6 MPa (56 bar). When released, the carbon dioxide undergoes a change of phase from liquid to a mixture of gas and solid. To avoid the risk of electrocution when employed against fires involving electrical equipment, the directional horn must be fabricated from an electrically insulating material. Most of the charge generation is believed to occur within this horn. If the extinguisher and operator are well insulated from ground, for example by an insulating floor or by footwear, the electrostatic potential can rise to 20-30 kV within a few seconds. For some extinguisher designs, potentials up to 50 kV can be attained [3].

If the operator contacts a grounded conductor, he is likely to experience an electrostatic shock. Though the shock in itself is not hazardous, it can be severe enough to deter continuing fire-fighting action and possible ensuing injury is a concern. The shock could lead to a loss of balance or cause the appliance to be dropped, with potentially serious consequences if the operator were in a precarious position such as atop a ladder.
3.3 Past explosions caused by the discharge of portable CO$_2$ extinguishers

Electrostatic discharges from the release of carbon dioxide have sufficient energy to ignite flammable fuel/air mixtures and have been responsible for numerous serious accidents. In New York Harbour in 1966, an attempt to inert damaged tanks of the marine tanker vessel Alva Cape with a carbon dioxide extinguisher, caused naphtha vapours to explode, killing four men and injuring seven [4]. In another case, two firefighters were fatally injured in an explosion, which occurred while they used a portable CO$_2$ extinguisher to inert a tanker truck [5].

3.4 The Bitburg disaster

Ignition can take place even if carbon dioxide is released into steel pipework that runs underground for considerable length. A disastrous explosion took place in a JP-4 aviation fuel underground tank at a US Air Force fuel depot near Bitburg, Germany, in 1954, killing 37 people [6].

Various acceptance tests were being made on the newly constructed underground tank and its novel carbon dioxide fire extinguishing system, the first of its kind in Germany. Present were French and German officials, technicians and contractors. The roof of the underground tank was capped with iron reinforced concrete and covered with a layer of soil. Most if not all of the victims were standing on the top of the tank during a controlled activation of the thermal sensing devices that would trigger CO$_2$ cylinders to discharge gas into the tank's headspace.

The CO$_2$ cylinders were located in a half-buried concrete supply house located about 75 m from the tank and connected to the tank by a 4-inch steel pipeline which branched into two 3” pipelines that followed the circumference of the tank and terminated in four equally distanced discharge outlets. The CO$_2$ pipeline was buried in the ground for its entire length and the discharge outlets were installed flush with the interior tank wall surface and welded to the main steel tank. Although presumably effectively grounded, this piping arrangement conveyed electrostatically charged carbon dioxide.

One minute after the CO$_2$ discharge commenced, a massive explosion disintegrated the tank. The blast blew victims through the air with such force that their bodies were found between the tank and the supply house. The official investigation [6] did not identify carbon dioxide as the source of ignition; its ability to generate static electricity was only realized later [7].

3.5 Summary

Back in 1977, Leonard and Clark [5] succinctly summarized the knowledge available at the time, concluding that CO$_2$ fire extinguishers are perfectly satisfactory when used for their intended purpose, i.e., extinguishing a fire, but they should never be used to inert atmospheres containing flammable fuel/air mixtures.
4 The 2010 silo explosion at Hallingdal

4.1 The facility's fire history

Hallingdal trepellets is a wood pellet manufacturer located in Ål Municipality, Norway, about 200 km NW of Oslo. Raw materials are pinewood and spruce, about 50/50. The facility started production early in 2007.

On April 23, 2007, there was a serious fire, which started in a covered pit with approximately 200 m³ of dry (humidity 8%) wood chips in bulk. The chips were still warm from the drying process. An adjacent pit held wet wood chips, humidity about 50%. A wooden wall separated the two pits. The incident started as a minor smouldering fire. Firefighters attempted to localize and contain the fire using various means such as infrared imagery, CO₂ extinguishers, fire hoses and steam lances, but the efforts were largely ineffective. Suddenly, the fire intensified, and over a time span of less than 10 minutes, developed into a blaze that spread rapidly to the production building. The fire rendered the facility a complete loss.

The facility was rebuilt. To avoid repeat fire contagion the dried wood chips were kept in a silo and the quantity stored was reduced. In addition, a new concrete wall separated the wood chips area from the production building. The following year, on July 5, 2008, there was a new fire in the wood chips area. This time the damage was limited thanks to the fire safety improvements.

On July 5, 2010, the facility saw a third fire, this time in a 7,742 m³ silo for final product that had been completed the year before. Shortly after midnight, firefighters were called to a smouldering fire in the silo. Eventually, the silo exploded while firefighters attempted to quench the fire with inert carbon dioxide.

4.2 The silo

The silo diameter was 24 m and the circular shell wall was 15 m tall. The apex of the cone roof was at 21 m. A band conveyor system terminating below the apex dumped freshly produced pellets into a pile below. To draw pellets, sliding doors in the floor could open and dump pellets onto a conveyor band. These doors were closed at the time of the fire. Temperature sensors hung on
wires that run from the roof to the floor monitor the temperature inside the pellet pile.

To enhance natural ventilation of the headspace, there was a 3 cm air gap between the silo shell and roof. The total area of the airgap was about 2 m². The roof was made of thin metal sheets joined to the supporting frame with metal bolts and plastic nuts. The total weight of the roof construction was about 27 t. Because plastic nuts were used, the roof construction was believed to be weak and able to serve as overpressure relief in case of an internal explosion [8].

4.3 Smouldering fire

Shortly after midnight on July 5, 2010, at 0043 hours, the fire and rescue services were called to the facility. Sensors in the pellet pile showed rising temperatures. The silo was slightly less than 50 percent full, containing an estimated 3,500 m³ of wood pellets. The on-scene-commander arrived at 0130 hours. He soon decided to request a shipment of nitrogen from Yara, a large producer of industrial gases located in Porsgrunn some 320 km away. At 0141 hours, the pile temperature had increased to 60°C and an alarm came in from the silo's fixed CO detector. At 0242 hours, infrared imagery was able to detect an increased temperature of the silo's outer shell, the pile temperature stayed at about 60 °C. Smoke was now visible above the roof area. Fire fighters received notice that a Yara nitrogen tanker truck was expected to arrive at noon. CO₂ bottles from nearby power stations were mobilized and arrived at 0635 hours. Only 22 bottles were available, about 220 m³ of CO₂ gas, just 5 percent of the headspace volume. A revised estimate pushed the arrival of the nitrogen tanker truck to mid-afternoon, at the earliest.

Although the effect of CO₂ injection was expected to be limited because of the modest quantities available, a CO₂ attack was decided, in the hope that it at least might attenuate the fire until nitrogen supplies arrived. CO₂ would be injected manually from a fixed platform located next to a roof inspection hatch. A crane hoisted a basket with the bottles onto the platform and two firefighters with breathing apparatus climbed the silo's exterior ladder to manually discharge the CO₂ through the inspection hatch.

4.4 Explosion

At 0845 hours, when discharging the fifth CO₂ cylinder, the silo exploded. The force of the explosion lifted the 27 t roof upwards and flames of burning gases shot out of the hatch opening and horizontally from the circumferential edge of the roof. Although the roof is believed to have lifted about 0.5 - 1 m, it re-seated without collapsing. There was no structural damage to the platform and the firefighters were able to descend the exterior ladder to ground level.

The firefighters suffered burn injuries to the ear, back and hand. Luckily, their full personal protective equipment offered excellent protection. There was
evident heat blister damage to a helmet and to a facial mask. The hood and jacket saw minor burn-through damage. One firefighter suffered burns to his hand because he had taken off one of his bulky gloves in order to operate the valve on the CO$_2$ cylinder.

After the explosion, the silo was considered a complete loss and an excavator was called in to tear a hole in the silo wall in order to empty the silo and extinguish the burning material outside. When the silo was torn open, a large surface fire was visible inside the silo.

4.5 Investigation

Based on readings from the temperature sensors hung on wires inside the silo, the smouldering fire was believed to have started near the centre of the pellet pile. Pellets had not been drawn from the silo for two weeks and it was speculated that self-heating of pellets deep inside the undisturbed pile could have started an oxygen deficient smouldering fire. Pyrolysis gasses would then accumulate in the silo's headspace.

The investigation identified the likely source of ignition to be a combustion zone break-through to the surface layer of the pellet pile. The wind was blowing steady at 8-10 m/s and the investigation report argued that sufficient turbulent entry of air through the 3 cm airgap between the shell and roof could have formed an ignitable pyrolysis gas mixture under the roof. In addition, that additional air entered the headspace through the open hatch when CO$_2$ was injected due to backdraft and wind.

The investigation did not identify electrostatic effects due to injection of carbon dioxide as a possible source of ignition. The national independent highly qualified senior fire investigator later stated that this mechanism was unknown to him.

4.6 Source of ignition

Ignition may have been caused by a sudden combustion zone break-through to the surface layer or by static electricity. There is no empirical basis for this article to enter a discussion on the likelihood of either mechanism. From an industrial accident prevention perspective, what matters most is the lack of awareness of the hazard of electrostatic effects amongst emergency responders and accident investigators.
5 Discussion

5.1 Clarification of terms: Inerting and purging

Terminology is important and it is useful to clarify precisely what is meant by inerting and purging.

Where an ignitable mixture is contained, such as in a processing vessel, the atmosphere can be made oxygen deficient by introducing enough inert gas to make the mixture non-ignitable. This technique is known as inerting in NFPA 69 [9] and NFPA 77 [10]. The key characteristic is that the mixture of flammable gas and air is in the ignitable range before an inert gas is introduced.

A different situation exists during start-up of process equipment. Before a flammable gas is introduced into a system containing air, it is often recommended that the air in the system be diluted by a nonreactive (inert) gas such as nitrogen, carbon dioxide, or argon to low concentrations so that when flammable gas is introduced, an ignitable mixture cannot form within the system. In the terminology commonly used in the petrochemical industry, this practice is known as "purging into service" [11].

A similar situation arises during shut-down. If a system that contains a flammable gas is to be taken out of service, the gas can be diluted by an inert gas to low concentration, so that when air is introduced, an ignitable mixture is not created within the system. This practice is known as "purging out of service" [11].

While the two purging practices are similar in principle, it is useful to have two distinct concepts because purging out of service requires much larger quantities of inert gas than purging into service. Carbon dioxide may be a suitable inert gas because both purging practices ensure that an ignitable mixture never forms in the system. Hence, in theory, the introduction of a possible source of ignition due to static discharges is of no concern.

Unfortunately, because an inert gas is used, both purging practices may loosely be referred to simply as "inerting". But purging should not be confused with inerting where an ignitable mixture of flammable gas and air is made safe by adding an inert gas. Carbon dioxide is unsuitable for this purpose.
5.2 German standards

Much of the early knowledge and insights regarding the ability of CO\(_2\) to create electrostatic discharges is based on work carried out in Germany, in particular insights gained after the disastrous Bitburg explosion in that country. It is therefore noteworthy, that the hazard has no prominent place in German rules and guidelines.

In Germany, the dangerous substances regulations are known as the Technische Regeln für Gefahrstoffe, TRGS (Technical rules for dangerous substances). The explosive atmospheres regulations are known as "Technische Regeln für Betriebssicherheit", TRBS (Technical Rules for Operating Safety). Some of them overlap. The relevant regulations are TRBS 2152, which comes in four parts [12–15]. Both the general section (part 1) [12] and the detailed technical requirements for preventing or mitigating a hazardous explosive atmosphere (part 2) [13] are silent on the electrostatic discharge hazard.

It is true, that part two deals only with purging in and out of service, in German terminology referred to as "partial inerting" and "total inerting" respectively, for which static discharges in principle are of no concern. Still, a warning about electrostatic discharges might be particularly relevant, for instance, in section 2.3.4, which deals with vessels in vacuum service, for which the safety system can be so designed that detection of an operational upset with air ingress will trigger an automated inerting response. The absence of a warning is noteworthy because the standard lists other types of situations where carbon dioxide (and nitrogen) are unsuitable inerting agents, e.g., that fine dusts of certain light metals may undergo chemical reaction with these gasses.

Part three [14] of TRBS 2152 does make passing reference on page 29 to another standard, TRBS 2153 [16], which deals with static electricity, but there is no specific mention that the inert gas carbon dioxide itself could be a source of static electricity. The TRBS 2153 standard on electrostatics clearly identifies the static hazard on pages 64-65 out of 128. It states that processes that may produce considerable static discharge include: "pneumatic transport of solids, a release of pressurized gas with solids, the discharge of liquid carbon dioxide, industrial vacuum cleaners and spray painting operations" [16] (emphasis added).

The TRBS 2153 standard also covers the situation when an ignitable mixture of flammable gas and air is to be made safe by adding an inert gas quite extensively, which is referred to simply as "inerting", similar to the terminology of NFPA 69 and NFPA 77. The standard cautions that the discharge of a fire extinguishment agent, which could produce static discharges, should never be carried out for test purposes, when a potentially explosive atmosphere exists. The standard specifically states that CO\(_2\) and wet steam (steam with droplets of water) are unsuitable inerting agents for this purpose [16]. This is the closest reference to the lessons learned from the Bitburg disaster.

In conclusion, is it probably fair to assume that safety-conscious readers with a prior concern or expectation that CO\(_2\) is able to create hazardous electrostatic
discharges will consult the TRBS 2153 standard on static electricity [16] and see their prior expectation confirmed. Safety-conscious but unsuspecting readers, however, are likely to consult the TRBS 2152 standard on flammable atmospheres only. A meticulous examination of the four documents that comprise this standard will provide no clue as to the electrostatic hazard.

It is true that information on the electrostatic hazard does exist. A German fire safety professional kindly informed that the European Industrial Gases Association (EIGA) covered the issue in a safety newsletter [17], which is also available in English [18]. This article argues however, that there is considerable evidence to suggest that the hazard is not widely appreciated. For instance an article in a German firefighter magazine [19] discusses two cases of fighting smouldering silo fires using CO$_2$, evidently oblivious of the electrostatic hazard.

5.3 NFPA standards

NFPA standards mirror German ones, confirming the electrostatic hazard of carbon dioxide to those readers who consult a standard on static electricity because they already suspect the gas to have these properties, but are otherwise mostly silent on the issue. NFPA 77 on static electricity clearly states that carbon dioxide from high-pressure cylinders or fire extinguishers should never be used to inert a container or vessel [10] (emphasis added).

NFPA 69 [9] on explosion prevention systems does neither mention electrostatic effects nor refer to NFPA 77 although the standard lists the following purge gas sources as acceptable: commercially available inert gas, such as nitrogen, carbon dioxide, argon, or helium, supplied from high-pressure tanks or cylinders. The standard's use of the terms purging and inerting is not entirely unambiguous.

NFPA 12 [20] on carbon dioxide extinguishing systems provides potentially ambiguous advice on the electrostatic hazard. Annex A states that the discharge of liquid carbon dioxide is known to produce electrostatic charges that, under certain conditions, could create a spark and duly refers to NFPA 77. The standard also specifies, that "carbon dioxide fire-extinguishing systems protecting areas where explosive atmospheres could exist shall utilize metal nozzles, and the entire system shall be grounded" [20, Sec. 4.2.1] (emphasis added). The first issue of concern is if the reader realizes that an explosive atmospheres can exist not only when flammable liquids give off vapours but also when pyrolysis gasses have accumulated. The second issue of concern is if effective grounding is sufficient to prevent hazardous electrostatic discharges – the Bitburg accident would appear to contraindicate this. The third and perhaps most important issue of concern is the standard's advice on the application of CO$_2$ to "deep-seated fires involving solids subject to smoldering" [20, Sec 5.2.3]. This is precisely the situation where pyrolysis gasses may have accumulated in the headspace to an extent where they are in the ignitable range – but the reader may not have realized this, and the standard does not identify the potential presence of flammable gasses. The nub of the issue may well be
lack of clarity in the meaning of the terms "fire" and "extinguishment", which are not defined in the standard's terminology section. The application of CO₂ is excellent for extinguishing a fire with flames, but unsuitable for quenching a deep seated smouldering fire without flame.

Annex A of the NFPA 850 [21] covers spontaneous heating, hotspot formation and fire in coal silos. Firefighting in coal silos is a long and difficult activity, the standard says, but carbon dioxide and nitrogen have been used successfully as gaseous inverting systems. The standard specifically states that carbon dioxide vapour has proven to be effective in quickly establishing an inert atmosphere in the space above the coal, which prevents the creation of an explosive atmosphere there. Carbon dioxide has the advantage over nitrogen of being denser than air, the standard says. Because nitrogen has a density similar to air it must be applied at numerous injection points around the silo to ensure that it displaces available oxygen. Compared to carbon dioxide, the standard says, nitrogen requires more injection equipment and a larger quantity of agent.

It is true that injection of carbon dioxide can prevent the creation of an explosive atmosphere in the silo headspace. This article argues however, that the procedure is unsafe because plant personnel or firefighters usually have limited means to determine if pyrolysis gasses present in the headspace are already in the ignitable range when the injection begins. The standard is silent on the electrostatic hazards of carbon dioxide.

5.4 Special report on US agricultural silos

Fires and explosions in agricultural silos have been responsible for the deaths and injuries of firefighters and civilians and have led to large loss of property. In response to a number of agricultural silo emergencies, the United States Fire Administration issued a Special Report in 1998 [22] in order to communicate significant lessons learned.

Spontaneous ignition and smouldering fires in agricultural silos present challenges to firefighters. The report states that extinguishment may be accomplished by injecting nitrogen or carbon dioxide into the silo using special fittings and piping. The report is silent on the electrostatic hazards of carbon dioxide.

5.5 Swedish contributions

Sweden is the only country in Scandinavia with a significant domestic pellet production. The domestic pellet market is mature and pellet consumers are diverse, from single-family households, industry, district-heating systems and large Combined Heat and Power (CHP) plants. For many years, Sweden was the largest consumer of wood pellets in the EU and was only in 2012 surpassed by Italy and Denmark [23].

Ambitious and foresighted research programmes have been undertaken by the Swedish National Testing and Research Institute (in Swedish: Sveriges
Prövnings- och Forskningsinstitut, abbreviated to SP) to address, inter alia, the challenges with wood pellet silo fires. In 2006, the SP reported the results of an experimental study on fire extinguishment in wood pellet silos [24]. The study concluded that extinguishment should be carried out with injection of nitrogen or carbon dioxide, primarily into the bottom of the silo, although injection into the headspace at an early stage could be considered in order to eliminate explosion risks, i.e. inerting. According to the report, the use of carbon dioxide merely presents practical problems because injection lances freeze up – the report is silent on the risk of electrostatic discharges.

The inert gas technique was applied e.g. in 2007, when a pellet silo in Kristinehamn, Sweden, experienced a smouldering fire due to self-ignition [25]. Tanker trucks with nitrogen and carbon dioxide were called to the site. Preparations for injection of nitrogen into the bottom of the silo were repeatedly delayed due to multiple complications when drilling openings in the concrete silo and with the improvised making of custom injection lances. Not to waste time, carbon dioxide was therefore introduced into the silo headspace through a fire hose. The hose froze up and plugged repeatedly. A total of 35 t of carbon dioxide were injected without incident. Evidently, the emergency responders and technical advisors from SP were oblivious to the risk of electrostatic discharges.

In 2011, the novel inert gas approach was communicated widely in Biomass Magazine [26] and Canadian Biomass [27], without mention of the electrostatic hazard. The Swedish experiences have also found way into popular pellet handbooks, e.g. [1] published in 2012, which merely states that attempts to use carbon dioxide without a vaporisation unit have caused many unsuccessful extinguishing operations as the supply hoses/lances/nozzles and the bulk material close to the injection point tend to freeze quickly, blocking further gas injection. An almost verbatim description is provided in an otherwise comprehensive publication on health and safety aspects of solid biomass published in 2013 by the International Energy Agency [28]. The publications are also silent on the risk of electrostatic discharges.

In 2013, the Swedish Civil Contingencies Agency issued a report on silo fires, written in English and clearly intended for an international audience [2]. This report, at last, does advice against the use of CO₂ due to risks of static electricity during gas injection. But the report is a sole voice of caution in an abundance of standards, guidelines and literature that appear to be oblivious of the hazard.
6 Conclusion

Policy makers and risk analysis professionals may wish that the state of knowledge is always increasing, that accident prevention knowledge is continuously improving, as if obeying a fundamental law of physics. This case shows that the opposite can occur. That important information on hazards, learned the hard way through investigation of past disastrous explosions, can pass out of sight. This appears to have happened in the fast growing wood pellet sector where difficulties with smouldering fires has led to new techniques for firefighting which employ inert gasses, of which carbon dioxide is one.

With the increase in the quantities of solid biomass handled, this knowledge loss becomes significant. The smouldering fires are difficult to deal with, water is not a suitable extinguishment agent, and firefighters, who are men of action, can become frustrated if having to wait idly for supplies of nitrogen to arrive. If carbon dioxide extinguishers are available it may be tempting to "do something" to retard fire development.

It is true that standards on static electricity, e.g. NFPA 77, do mention the electrostatic hazard of carbon dioxide. Safety conscious readers however, are likely to consult such standards only if they already suspect carbon dioxide to have electrostatic properties. Safety conscious but unsuspecting readers will likely consult standards on flammable atmospheres only, which are silent on the electrostatic hazard. Popular wood pellet handbooks are also silent on the hazard.

NFPA 12 on carbon dioxide extinguishment systems should be more specific on the presence of pyrolysis gasses when extinguishing smouldering fires. The application of CO₂ is excellent for extinguishing a fire with flames, but can be unsuitable for quenching a deep seated smouldering fire without flame.

The standards, guidelines and handbooks examined provide little information on the electrostatic hazards of carbon dioxide, supporting a general conclusion that the hazard appears to be widely under-appreciated, across countries. Important fields of application, such the practice of installing CO₂ extinguishment systems in the cargo hold of marine vessels, some carrying wood pellets susceptible to smouldering fires, could not be covered in this work. More research into the subject is needed.

The past decade has seen a major increase in the consumption of wood pellets. The growth has been mirrored in an increase of pellet related accidents.
involving fires, dust explosions and toxic gasses, some of which have been poorly investigated, causes not identified and lessons not learned [29,30]. A small but growing body of literature argues that bioenergy and other low-carbon energy systems present major accident hazards [31–34]. There are even indications that the number of accidents in the bioenergy sector is growing faster than the energy production [33].

Utmost care should be taken to avoid so-called media-shifting [35], i.e. that the resolution of a problem within one domain, the environmental, creates a new problem in another, the workplace safety domain.
7 Conflicts of interest

The author has no conflicts of interest to declare.
8 Acknowledgements

I'm grateful to Dag Botnen, Fire Chief Officer, Hallingdal Fire Service, Torpomoen, for valuable inputs and helpful discussion on the 2010 fire and explosion event.

This article has been produced as a voluntary effort and did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. Opinions expressed are those of the author, not his employers’ or organizations’.
9 References


[7] K. Nabert, G. Schön, Folgerungen aus den Untersuchungen über die Ursache der Explosionskatastrophe bei Bitburg (in German) [Conclusions from investigations into the cause of the explosion disaster at Bitburg], Erdöl Und Kohle. 8 (1955) 809–810.


[10] NFPA 77. Recommended Practice on Static Electricity. 2014 Edition, National Fire Protection Association, Quincy, Massachusetts, USA,
Carbon dioxide not suitable for extinguishment of smouldering fires

2013.


[19] A. Weiß, Inertisierung mit Kohlendioxid oder Stickstoff bei Schwelbränden in Silos (in German) [Inerting smouldering fires in


