Ex-situ X-ray computed tomography data for a non-crimp fabric based glass fibre composite under fatigue loading

Jespersen, Kristine Munk; Mikkelsen, Lars Pilgaard

Published in:
Data in Brief

Link to article, DOI:
10.1016/j.dib.2017.10.074

Publication date:
2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Author’s Accepted Manuscript

Ex-situ X-ray computed tomography data for a non-crimp fabric based glass fibre composite under fatigue loading

Kristine M. Jespersen, Lars P. Mikkelsen

PII: S2352-3409(17)30595-4
DOI: https://doi.org/10.1016/j.dib.2017.10.074
Reference: DIB1898

To appear in: Data in Brief

Received date: 12 October 2017
Revised date: 17 October 2017
Accepted date: 31 October 2017

Cite this article as: Kristine M. Jespersen and Lars P. Mikkelsen, Ex-situ X-ray computed tomography data for a non-crimp fabric based glass fibre composite under fatigue loading, Data in Brief, https://doi.org/10.1016/j.dib.2017.10.074

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Data article

Title: Ex-situ X-ray computed tomography data for a non-crimp fabric based glass fibre composite under fatigue loading

Authors: Kristine M. Jespersen and Lars P. Mikkelsen

Affiliations: Department of Wind Energy, Section of Composites and Materials Mechanics, Technical University of Denmark, Risø Campus, 4000 Roskilde, Denmark

Contact email: kmun@dtu.dk (K.M. Jespersen), lapm@dtu.dk (L. P. Mikkelsen)

Abstract

The data published with this article are high resolution X-ray computed tomography (CT) data obtained during an ex-situ fatigue test of a coupon test specimen made from a non-crimp fabric based glass fibre composite similar to those used for wind turbine blades. The fatigue test was interrupted four times for X-ray CT examination during the fatigue life of the considered specimen. All the X-ray CT experiments were performed in the region where unidirectional fibre fractures first became visible, and thereby include the damage progression in 3D in this specific region during fatigue loading of the specimen.

Specifications Table

<table>
<thead>
<tr>
<th>Subject area</th>
<th>Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>More specific subject area</td>
<td>Fibre composites, Damage mechanics</td>
</tr>
<tr>
<td>Type of data</td>
<td>Image (X-ray computed tomography data sets)</td>
</tr>
<tr>
<td>How data was acquired</td>
<td>Zeiss Xradia Versa 520 (X-ray CT)</td>
</tr>
<tr>
<td>Data format</td>
<td>Raw, Reconstructed</td>
</tr>
<tr>
<td>Experimental factors</td>
<td>Interrupted tension-tension fatigue test (R=0.1)</td>
</tr>
<tr>
<td>Experimental features</td>
<td>High resolution X-ray CT scans performed in the same region after each interruption point of the fatigue test</td>
</tr>
<tr>
<td>Data source location</td>
<td>Roskilde, Denmark</td>
</tr>
</tbody>
</table>

Data accessibility

If possible, the data should be uploaded directly with this article. However, as the data is around 50GB, it might not be possible to upload automatically. Therefore, the data is temporarily available for download here: https://dk-sid.migrid.org/cgi-sid/ls.py?share_id=Cd4jZFMRI1 for the DIB editing team. If it is still not possible to upload it directly with this article, it can be published permanently using Zenodo.or on the following link “https://doi.org/10.5281/zenodo.845707” by the author.

Value of the data

- The data makes it possible to observe damage progression inside the specimen, and can be used for further establishment of automatic 3D visualisation methods, which could enhance the understanding of the damage progression mechanisms even further.
- The data can serve as a comparison base and as initial knowledge for modelling of the damage progression.
The detailed damage mechanisms in the data sets can be explored further if automatic image analysis methods are developed for quantification of the damage relative to the fibre and fibre bundle architecture.

Data
The data published here consist of four sets of X-ray CT data captured after each interruption point of a tension-tension fatigue test (47300, 57300, 67300, and 77300). For each interruption point, the raw projection data in the “.txrm” format and the reconstructed data in the “.tif” format along with relevant scan settings (labelled “info1” and “info2”) are provided. The “.txrm” format is the regular output format for the raw image data of the Zeiss Xradia Versa 520 system used for the experiments before reconstruction. In addition, a large field of view (LFOV) dataset and a video showing the 3D visualisation of uni-directional fibre fractures (Fig. 9 in [1]) was also included as a supplement to the ex-situ X-ray CT data.

Experimental Design, Materials and Methods
Test specimen and fatigue testing
Ex-situ X-ray CT fatigue experiments were carried out on a 410 mm long butterfly shaped test specimen optimised for testing uni-directional (UD) fibre composites [2] with a 15mm wide gauge section [1]. The material system considered was a glass fibre non-crimp fabric reinforced polyester composite with the layup [b/biaxial,b/0,b/0], where “b” refers to the supporting backing layer and “0” to the UD fibre bundles, which are stitched to the backing layer. The supporting backing layer is made from fibre bundles oriented in the directions 45°/90°/-45° and is significantly thinner than the UD layer of the fibre composite (see also [1]). The backing fibre bundles have a significantly larger spacing than the UD fibre bundles and in some regions cross over one another due to their lay-up.

The tension-tension fatigue test was carried out in load control with a stress ratio of R=0.1 at a test frequency of 5Hz and an initial strain of ϵ=1%. Initially two static tests were performed to obtain the initial stiffness and thereby estimate the load corresponding to 1% strain of the specimen prior to the fatigue test. The strain was measured over a 25mm length in the gauge section of the specimen using extensometers. The fatigue test was interrupted for X-ray CT examination after 47300, 57300, 67300, and 77300 load cycles followed by failure of the specimen. The last interruption point was close to final failure (see also [1]).

X-ray Computed Tomography
X-ray CT experiments were carried out after each interruption point of the fatigue test where the same region was scanned multiple times. To do so, the specimen was taken out of the fatigue testing machine and mounted in the X-ray CT scanner using a special holder making it easy to mount the specimen in the same way each time. After remounting the specimen in the X-ray CT scanner, the positioning was manually fine-tuned by comparing the 2D projection images from two sides of the specimen to those of the first interruption point. A 2000x2000 pixel detector with an optical magnification of 4X was used, and the scans were carried out with a binning of 2 resulting in 1000x1000 pixels in the projection images. The images were captured with a source to sample distance of 28mm and a detector to sample...
distance of 35mm resulting in a pixel size of 3µm. The experiments were carried out using an accelerating voltage of 70keV, and exposure time of 7 seconds. 4601 projections were captured during a full rotation of 360 degrees. For each data set there can be a slight variation in the settings, however the detailed settings for each of the four X-ray CT experiments can be found labelled by “info1” and “info2” in the data published with this article. To consider the same region of the specimen repeatedly

Acknowledgements
Financial support from CINEMA: “the allianCe for ImagiNg of Energy MAterials”, DSF-grant no. 1305-00032B under “The Danish Council for Strategic Research” is gratefully acknowledged. This research was conducted using mechanical testing equipment from DTU Center for Advanced Structural and Material Testing (CASMAT), Grant No. VKR023193 from Villum Fonden. Finally, we would like to thank Steffen Rasmussen and Anthony Fraisse from DTU Wind Energy for assistance with the mechanical tests.

References