Reprogramming amino acid catabolism in CHO cells with CRISPR-Cas9 genome editing improves cell growth and reduces by-product secretion

Ley, Daniel; Domingues Pereira, Sara Isabel; Pedersen, Lasse Ebdrup; Arnsdorf, Johnny; Hefzi, Hooman; Lund, Anne Mathilde; Kwang Ha, Tae; Wulff, Tune; Kildegaard, Helene Fastrup; Andersen, Mikael Rørdam

Publication date:
2017

Citation (APA):
Reprogramming Amino Acid Catabolism in CHO Cells with CRISPR-Cas9 Genome Editing Improves Cell Growth and Reduces By-Product Secretion

Daniel Ley1,2, Sara Pereira3, Lasse Ebdrup Pedersen2, Johnny Arnsdorf3, Hooman Hefzi3,4, Anne Mathilde Lund1, Tae Kwang Ha1, Tune Wulff2, Helene Faustrup Kildegaard3, Mikael Rørdam Andersen1.

(1) Network Engineering of Eukaryotic Cell Factories, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark; (2) Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark; (3) Department of Biotechnology and Biomedicine, University of California, San Diego, United States; (4) Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego, School of Medicine, United States.

Correspondence: Daniel@biosustain.dtu.dk / Mikk@bio.dtu.dk

Key message
CHO cells primarily utilize amino acids for three processes: biomass synthesis, recombinant protein production and catabolism. In this work, we disrupted 9 amino acid catabolic genes participating in 7 different catabolic pathways, to increase synthesis of biomass and recombinant protein, while reducing production of growth-inhibiting metabolic by-products from amino acid catabolism.

Background
Amino acid catabolism produces a wide range of growth inhibiting compounds3, amongst these ammonium and lactate. Ammonium is produced by transamination and deamination reactions3, whereas lactate is produced by either amino acid catabolic pathways fueling glycolysis or by NAD+ producing catabolic pathways, which forces the cell to regenerate NAD+ through lactate synthesis3. Disruption of amino acid catabolic pathways may reduce production of growth-inhibiting metabolic by-products.

Physiology of single gene disrupted CHO cells
To study the physiological impact of disrupting single amino acid catabolic pathways, we characterized single gene disrupted clones in triplicate shake flasks in batch mode. We monitored physiological changes in terms of maximum specific growth rate (μ_{max}), integral of viable cell density (IVCD) and secretion of lactate and ammonium.

Validation of functional gene knock-out
Functional gene disruptions were validated using deep sequencing of the targeted genomic loci, gene expression analysis, western blots and proteomics. All genes displayed out-of-frame mutations (A) and generally reduced transcription (B). Western blots indicated potential wild type proteins in some clones (C), so proteomic analysis and mRNA sequencing was applied to verify functional knock-out of target genes (ongoing work).

Conclusion
Disruption of single amino acid catabolic pathways in CHO cells reduces specific production of lactate and ammonium, while increasing μ_{max} and IVCD, leading to increased titers of recombinant proteins. Disruption of multiple catabolic pathways further reduces secretion of lactate and ammonium, but does not increase growth. Thus, we recommend combinatorial disruption of multiple amino acid catabolic pathways, to identify a set of disruptions that increase growth, while reducing secretion of lactate and ammonium.

References

Acknowledgements
We acknowledge the Gennadiy Ivanov and Zylla Salha for technical assistance with generation of genome edited cell lines. Moreover, we thank Samsøn Jørgensen for closing plasmids and Thomas Bechthold Kallhäuser for sharing his experience in design of quantitative PCR experiments and Lone Holling Wüller for assisting in the proteomics experiment. The Novo Nordisk Foundation provided funding for this work.