A novel in situ measurement method of bubble sizes in bioreactors using a high speed camera

Bach, Christian; Albæk, Mads Orla; Krühne, Ulrich; Gernaey, Krist V.

Publication date: 2017

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
A novel in situ measurement method of bubble sizes in bioreactors using a high speed camera

C. Bach¹, M. O. Albaek², U. Krühne¹ & K. V. Gernaey¹

¹Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800 Lyngby, Denmark

²Fermentation Pilot Plant, Novozymes A/S, Krogshoejvej 36, 2880 Bagsvaerd, Denmark

Abstract

Mass transfer of oxygen from the gas phase to the liquid phase is the rate limiting phenomenon in many industrial aerobic fermentation processes. This phenomenon is often described by the rate constant $k_{L,a}$, which remains a key performance indicator for scale up and general operation of fermentation processes. The attributing variables to the rate constant, the mass transfer resistance $k_{L}$ and interfacial surface area $a$, are however very rarely individually identifiable from standard experimental analysis. This co-dependency of the variables on the rate constant limits the understanding of how process conditions affect the mass transfer rate, and hence a tool for identifying them individually is required. Available correlations for these variables are predominantly system dependent and therefore not necessarily valid in the process of interest. Currently available measurement techniques to identify bubble size require knowledge or assumptions regarding the gas flow direction to deduce the bubble size.

An optical method for determining the interfacial surface area, based on bubble size identification has been developed using a high speed camera and an endoscope. This novel method has been applied to bioreactors at different conditions in terms of power input, gas flow rate and viscosity. This in situ measurement illustrates the effect of process conditions on the size of the bubbles. The information on bubble sizes at different conditions is a valuable input to mechanistic models regarding gas-liquid mass transfer, for example computational fluid dynamics (CFD) models, in which the bubble size is a key input parameter.