Prediction of speech intelligibility based on a correlation metric in the envelope power spectrum domain

Iborra, Helia Relano; May, Tobias; Zaar, Johannes; Scheidiger, Christoph; Dau, Torsten

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Prediction of speech intelligibility based on a correlation metric in the envelope power spectrum domain

Helia Relaño Iborra,a), Tobias May, Johannes Zaar, Christoph Scheidiger and Torsten Dau
Hearing Systems Group, Department of Electrical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark.

Introduction
A powerful tool to investigate speech perception is the use of speech intelligibility prediction models. Recently, a model was presented, termed correlation-based speech-based envelope power spectrum model (sEPSMcorr) [2], based on the auditory processing of the multi-resolution speech-based Envelope Power Spectrum Model (mr-sEPSM) [2], combined with the correlation back-end of the Short-Time Objective Intelligibility measure (STOI) [3]. The sEPSMcorr can accurately predict NIDs for a broad range of listening conditions, e.g., additive noise, phase jitter and ideal binaural processing conditions.

The sEPSMcorr model includes auditory thresholds, such that sensitivity loss can be incorporated based on the audiogram, but other types of hearing impairments (HI) cannot be simulated using this framework. However, speech perception can vary greatly among listeners even when hearing sensitivity is similar. Therefore, the predictive power of the sEPSMcorr back-end was further investigated in combination with a more realistic processing and perception model (CASP) [4]. Here, the speech-based CASP (sCASP) was evaluated in HI conditions and compared to the sEPSMcorr.

The sEPSMcorr model

The CASP model offers more flexibility to model hearing impairments, beyond the audiogram, due to the Dual Resonance Non-Linear filterbank (DRNL) [5]. The model has been shown to account for psychoacoustical data from individual HI subjects.

Towards prediction of HI data

The CASP model offers more flexibility to model hearing impairments, beyond the audiogram, due to the Dual Resonance Non-Linear filterbank (DRNL) [5]. The model has been shown to account for psychoacoustical data from individual HI subjects.

Test conditions

The models were evaluated in conditions with:

- Speech mixed with stationary or non-stationary interferers: Speech shaped noise (SSN), which was also used to fit the model; Amplitude modulated SSN (AMSSN) with \(f_{ch} = 8\) Hz and modulation depth of 1. and the speech like, but non-salient international speech test signal (ISTS).
- Noisy speech in the presence of reverberation: LRT = 0.4, 2.3, 2.5 and 2.7 s.
- Noisy speech subjected to different types of noise processing:
 - Ideal Binary Mask processing (IBM) with four interferers.
 - Phase Jitter distortion

Results

Additive noise

Reverberant speech

Jittered speech

Summary of results

The sCASP model provides similar (and in some conditions better) results than the sEPSMcorr.

The model can now serve as foundation for the development of a HI model, since the DRNL-based framework allows for fitting to individual impairments.

Outlook

- Investigate the model’s ability to account for individual hearing impairments using the parameters available in the CASP framework.
- Consider additional processing stages that could account for inner hair-cell loss and auditory nerve deafferentation (Sumner et al., 2002 [8]; López-Poveda and Barrios, 2013 [9]), as they are likely to be important in speech in noise-related tasks.
- Determine the conditions on which the HI model will be tested with special focus on supra-threshold distortions that might be challenging for HI subjects.

Fitting of the models

The models are fitted per speech material to the condition of clean speech with SSN by fitting a sigmoid function between the model outputs and the human scores.

[8] Sumner et al., 2002; Lopez-Poveda and Barrios, 2013 [9], as they are likely to be important in speech in noise-related tasks.

helialab@elektro.dtu.dk