Electrochemical Catalysis of Inorganic Complex K4[Fe(CN)6] by Shewanellaoneidensis MR-1

Zheng, Zhiyong; Wu, Ranran; Xiao, Yong; Christensen, Hans Erik Mølager; Zhao, Feng; Zhang, Jingdong

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Electrochemical Catalysis of Inorganic Complex $K_4[Fe(CN)_6]$ by *Shewanella oneidensis* MR-1

Zhiyong Zheng†, Ranran Wu†, Yong Xiao†, Hans Erik Christensen Mølager†, Feng Zhao‡, and Jingdong Zhang†

†Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark

‡CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences (CAS), Xiamen, 361021, China

zhizhe@kemi.dtu.dk

The interaction between metal and bacteria is a universal and important biogeochemical process in environment. As a dissimilatory metal reduction bacterium, the electrochemically active bacterium *Shewanella oneidensis* MR-1 can transfer intracellular electrons to minerals. This ability is attributed to the redox proteins localized on the outer-membrane, for example, the MtrC, MtrB, MtrA and CymA. Here we investigate its electrochemical properties towards redox inorganic redox compounds. It shows strong electrocatalysis toward electrochemical oxidation of $K_4[Fe(CN)_6]$. As a redox molecule, $K_4[Fe(CN)_6]$ gives a pair of redox peaks on voltammetry on bare glassy carbon electrode (GCE), symmetric with ideal peak-peak separation of about 60 mV, indicating of a reversible one-electron transfer process (blue curve, Figure 1). Surprisingly, the presence of *S. oneidensis* MR-1 on GCE results an asymmetric redox peak, with almost disappearance of the cathodic peak and strengthen of the anodic peak, which is a typical catalysis feature of electrochemical oxidation. Further experiments show that *S. oneidensis* MR-1 does not give such electrocatalysis to redox compounds such as Ru[(NH$_3$)$_6$]Cl$_3$ and Resorufin. Selectivity and electrocatalysis mechanisms of *S. oneidensis* MR-1 are under investigation. The ability of *S. oneidensis* MR-1 to catalyze redox action of inorganic metal complex compounds will provide an insight on metal cycles in nature.

![Figure 1. The cyclic voltammetry of $K_4[Fe(CN)_6]$ at GCE coating *Shewanella oneidensis* MR-1 (MR-1), the glassy carbon electrode (GCE) and GCE coating with MR-1 in phosphate buffer solution (PBS) and GCE in $K_4[Fe(CN)_6]$ were as control (scan rate: 10 mV/s)](image)

References

Acknowledgements
This work is supported by the China Scholarship Council (CSC) (No. [2016]3100), the Carlsberg Foundation (CF15-0164), and Otto Monsteds Foundation and Universities Denmark.