Mitochondrial genome of the North African Sahara Honeybee, Apis mellifera sahariensis (Hymenoptera: Apidae)

Haddad, Nizar; Adjlane, Noureddine; Loucif-Ayad, Wahida; Dash, Abhinandita; Naganeeswaran, S.; Rajashekar, Balaji; Al-Nakeeb, Kosai Ali Ahmed; Sicheritz-Pontén, Thomas

Published in:
Mitochondrial DNA Part B

Link to article, DOI:
10.1080/23802359.2017.1365647

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Mitochondrial genome of the North African Sahara Honeybee, Apis mellifera sahariensis (Hymenoptera: Apidae)

Nizar Haddad, Noureddine Adjlane, Wahida Loucif-Ayad, Abhinandita Dash, Naganeeswaran S., Balaji Rajashekar, Kosai Al-Nakeeb & Thomas Sicheritz-Ponten

To link to this article: http://dx.doi.org/10.1080/23802359.2017.1365647

© 2017 National Center for Agriculture Research and Extension. Published by Informa UK Limited, trading as Taylor & Francis Group.

Published online: 22 Aug 2017.

Submit your article to this journal

View related articles

View Crossmark data

Nizar Haddad¹, Noureddine Adjlane², Wahida Loucif-Ayad³, Abhinandita Dash⁴, Naganeeswaran S.⁴, Balaji Rajashekard⁴, Kosai Al-Nakeeb⁵ and Thomas Sicheritz-Ponten⁶

¹Bee Research Department, National Center for Agriculture Research and Extension, Baq’a, Jordan; ²Faculty of Science, Department of Biology, M’hamed Bougara University of Boumerdes, ENS Kouba, Algiers, Algeria; ³Faculty of Science, Laboratory of Applied Animal Biology, University Badji-Mokhtar, Annaba, Algeria; ⁴Genotypic Technology Private Limited, Bangalore, India; ⁵Department of Bio and Health Informatics, Technical University of Denmark, Lyngby, Denmark

ABSTRACT

We present the complete mitochondrial genome of honey bee subspecies, *Apis mellifera sahariensis* (Apidae) belonging to the African lineage. The assembled circular genome has a length of 16,569 bp which comprises 13 protein coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and AT-rich region.

ARTICLE HISTORY

Received 21 July 2017
Accepted 7 August 2017

KEYWORDS

Apis mellifera sahariensis; genome sequence; Sahara bee; mitogenome

Apis mellifera sahariensis is a subspecies of honeybee (*Apis mellifera*) belonging to the African lineage and is found in the oases of the Sahara to the south of the Atlas Mountains, Ain-Sefra, Bechar, Algeria (32°45’22.8”N, 0°34’40.092”W) (Baldensperger 1924). It has the ability to adapt to extreme conditions like temperatures in Saharan zones ranging from −10°C to over 50°C to drought conditions (Adjlane et al. 2016) and high altitudes (Haccour 1960). In the present study, we report the first complete mitochondrial genome of *Apis mellifera sahariensis*, which will enhance our knowledge on *Apis* mitogenomes and phylogeny, the previous studies of *Apis mellifera intermissa* (Peng et al. 2014) and *Apis mellifera syriaca* (Haddad 2015) from the Middle East North Africa Region, will help further understanding the genetic relation between these bees.

The draft genome of the *Apis mellifera sahariensis* was sequenced using Illumina HiSeq platform (150 bp paired-end chemistry) at Genotypic Technology Pvt. Ltd. (Bangalore, India). We assembled a subset of the generated raw reads from the mitochondrial genome and annotated the assembly with the MITOS webserver (Bernt et al. 2013). Evolutionary analysis of the mitochondrial genome was done using the PAUP software (Swofford 2003).

In this report, we have presented the complete circular mitogenome of *Apis mellifera sahariensis* with the a total length of 16,569 bp. The assembled genome quality was substantiated with an average vertical read depth of 22,410 bp per position. Nucleotide composition in the assembled mitogenome comprises A = 6885 bp (41.55%), T = 7165 bp (43.24%), G = 1595 bp (9.63%), C = 924 bp (5.58%) with an overall AT-rich percentage of 84.80%. A total of 37 genes which include mitochondrial protein coding genes for oxidative phosphorylation (atp6, atp8, cob, cox1, cox2, cox3, nad1, nad2, nad3, nad4, nad4l, nad5, and nad6) along with 22 tRNA genes as well as genes for the large and small ribosomal RNAs (rrnL and rrnS) were annotated. Homology search of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* with available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high similarity of *Apis mellifera sahariensis* against available *Apis* mitogenomes resulted in high homology and similar gene arrangement. Phylogenetic analysis showed high simil
Disclosure statement

The authors report no conflicts of interest.

Funding

This work was funded by USAID grant numbers: TA-MOU-09-M29-075 and TA-MOU-11-M32-035. The authors acknowledge support from Science for Life Laboratory, the Knut and Alice Wallenberg Foundation and the National Genomics Infrastructure (NGI) for assistance with massively parallel sequencing.

ORCID

Nizar Haddad [http://orcid.org/0000-0003-0250-5291]
Kosai Al-Nakeeb [http://orcid.org/0000-0003-3432-3628]
Thomas Sicheritz-Ponten [http://orcid.org/0000-0001-6615-1141]

References

