Genetic-Metabolic Coupling for Targeted Metabolic Engineering

Cardinale, Stefano; Tueros Farfan, Felipe Gonzalo; Sommer, Morten Otto Alexander

Published in:
Cell Reports

Link to article, DOI:
10.1016/j.celrep.2017.07.015

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Cardinale et al. investigate the specific impact on the cell of synthetic metabolic pathways. By linking the growth of bar-coded mutants with end-product biosensing in E. coli, the authors identify genetic targets in the cellular Fe-S cluster biosynthesis specifically affecting the production of recombinant thiamine.
Genetic-Metabolic Coupling for Targeted Metabolic Engineering

Stefano Cardinale,1,2,* Felipe Gonzalo Tueros,1 and Morten Otto Alexander Sommer1,*
1NFF-CFB, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
2Lead Contact
*Correspondence: stefca@biosustain.dtu.dk (S.C.), msom@bio.dtu.dk (M.O.A.S.)
http://dx.doi.org/10.1016/j.celrep.2017.07.015

SUMMARY

Production of chemicals in microbes often employs potent biosynthetic enzymes, which can interact with the microbial native metabolism to affect cell fitness and product yield. However, production optimization largely relies on data collected from wild-type strains in the absence of metabolic perturbations, thus limiting their relevance to specific conditions. Here, we address this issue by coupling cell fitness to the production of thiamine diphosphate in Escherichia coli using a synthetic RNA biosensor. We use this strategy to interrogate a library of transposon mutants and elucidate the native gene network influencing both cell fitness and thiamine production. Ultimately, we identify effectors of the OxyR-Fur stress response that limit thiamine biosynthesis via alternative regulation of iron storage and Fe-S cluster inclusion in enzymes. This study presents a new approach for the reliable high-throughput identification of genetic targets of both known and unknown function that are directly relevant to a specific biosynthetic process.

INTRODUCTION

A common problem in the field of biotechnology is the unpredictability inherent in engineering complex biological systems. The use of a whole-system approach can prevent some of the obstacles encountered in bioengineering, including toxicity due to metabolite overproduction (Fletcher et al., 2016), metabolic bottlenecks (Lechner et al., 2016), and low product titers (Otero and Nielsen, 2010). Systems metabolic engineering relies on the generation and analysis of large datasets to identify key genetic components that contribute to high-yield production phenotypes. However, this methodology often assumes an unperturbed system, and our capacity to elucidate all metabolic and regulatory perturbations affecting the production of a given metabolite is limited.

The impact of engineering a cellular system to produce a primary metabolite can be substantial. The biosynthetic pathways of primary metabolites often utilize specialized enzymes of high catalytic rate and substrate affinity; these attributes support high flux through the pathway, even at low enzyme concentrations (Nam et al., 2012). When these enzymes are overexpressed, the supply of energy, cofactors, and carbon building blocks quickly become limiting and can lead to a strong metabolic burden on the cell. Indeed, metabolic burden can lead to low cell density and reduced titers during the production of recombinant vitamins, such as cobalamin (vitamin B₁₂) (Biedendieck et al., 2010) or riboflavin (vitamin B₂) (Lin et al., 2014). Furthermore, central cell metabolism, which provides building blocks for vitamin biosynthesis, is subject to complex regulation that can affect pathway optimization (Lin et al., 2014).

The effect of producing a metabolite is strongly dependent on the individual metabolite and how it affects cell metabolism and its regulation. Understanding the relevance of this context dependency at the genomic level remains a challenge in the field of biotechnology. New approaches enabling high-throughput characterization of fitness and pathway yields are key to achieving this goal. Tagged transposon mutagenesis (Oh et al., 2010) and synthetic RNA-based biosensors (Townshend et al., 2015) are genetic tools that have been applied to study the condition-dependent contributions of genes to cell growth and synthetic pathway output.

Here, we present a methodology for characterizing the metabolic perturbations that are a direct result of the overproduction of a primary metabolite in a bacterial cell. Genetic-metabolic coupling is based on the concurrent expression of a synthetic metabolic pathway and an end-product biosensor in a population of bar-coded single-gene transposon insertion mutants. Mutant fitness data quantified by deep sequencing are used to identify which genes provide growth advantage exclusively upon selection for the end product. We use genetic-metabolic coupling to assess the influence of Escherichia coli cell functions during the biosynthesis of a derivative of vitamin B₁: thiamine diphosphate (TPP).

We found that the OxyR-Fur-mediated regulation of Fe-S cluster formation strongly affects TPP output. Ultimately, genetic-metabolic coupling allowed the identification of a small set of genes, several of which of uncharacterized or predicted function, with strong population-wide fitness phenotypes from over 2,000 tested genes. When introducing specific knockouts in a clean genetic background, the identified genes resulted in the predicted changes to the TPP titers, with different production plasmids and in different host strains. We finally demonstrate reverse tuning of several identified genetic targets with multi-copy plasmids, further supporting the broad application of genetic-metabolic coupling for metabolic engineering.
RESULTS

Coupling Population Genetics to Thiamine Metabolic Engineering

To create a TPP-overproducing strain for our analysis, we assembled the TPP biosynthetic genes on a plasmid. The genes were arranged in two operons that encoded the two different cellular branches required for the biosynthetic pathway. Four genes are involved in the synthesis of thiazole monophosphate (THZ-P) from L-cysteine, L-tyrosine, and deoxy-D-xylulose-5-phosphate (DXP): thiFSGH; thiC, for the synthesis of 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P) from 5-aminoimidazole riboside (AIR); thiE for coupling THZ-P to HMP-PP; and either thiD, the kinase that phosphorylates HMP-P to HMP-PP (plasmid pTHId), or thiM (plasmid pTHIm), a salvage enzyme that phosphorylates THZ. In the latter case, the strain relies on the native chromosomal thiD gene for HMP-P phosphorylation (details are provided in Figures S1A and S1B). The synthesis of TPP relies on several cellular biosynthetic pathways for substrates and, in particular, purine nucleotide biosynthesis for AIR, cysteine biosynthesis, and S-adenosylmethionine (SAM) and NADPH as cofactors.

To quantitatively relay the intracellular TPP concentration at the single-cell level, we used a TPP biosensor (plasmid pTPP_Bios) based on an engineered TPP riboswitch (Genee et al., 2016). This riboswitch is used to activate the expression of two genes conferring resistance to the antibiotics chloramphenicol (cat) and spectinomycin (SpeR). This dual-selection design allows for the reliable selection of high TPP producers using both the pTHIm and pTHId plasmids with very low false-positive rates (Genee et al., 2016). The extracellular titers of de novo-produced TPP in E. coli MG1655::ΔtbpAΔthiM (BS134), which carries deletions of the thiamine salvage and import pathways, were ~200 μg/L and ~800 μg/L for pTHIm and pTHId, respectively (Figure 1A). The overexpression of thiamine biosynthetic genes reduced the growth rates by 10% and 35% for pTHIm and pTHId, respectively.

To understand the cellular components impacting the E. coli TPP biosynthetic capacity, we used whole-genome transposon (Tn) mutagenesis to construct libraries of E. coli MG1655 Tn5 mutant strains harboring the thiamine selection system (pTPP_Bios) and either the plasmid carrying both de novo and salvage biosynthetic genes (pTHIm) or the plasmid without a biosynthetic pathway, constructing the respective libraries lTpp and lMck (Figure 1B). Insertions were evenly distributed across the genome and through the lengths of open reading frames (Figures S1C and S1D) (RefSeq: NC_000913.3). To characterize the impact of Tn insertions within various E. coli genes on the intracellular excess of TPP, we subjected the lMck and lTpp mutant libraries to a competitive fitness assay for 16 hr in shake flasks, obtaining robust fitness estimates for 1,857 genes in the lMck library and 2,054 genes in the lTpp library.

Figure 1. Genetic-Metabolic Coupling Design

(A) Quantification of extracellular TPP titer with pTHId and pTHIm (blue and red, respectively) compared to a control (no plasmid, gray) in E. coli MG1655 and BS134 strains (n = 4–6). Error bars indicate SD.

(B) Graphical scheme of the experimental design. A wild-type E. coli strain carrying the dual riboswitch (pTPP_Bios) is subject to mutagenesis via a tagged Tn5 Tn. Following library characterization (transposon-sequencing [TnSeq]), the TPP production plasmid (pTHIm) or the backbone plasmid (pMck) is electroporated in the pool of mutants to obtain, respectively, the lTpp and lMck libraries. These libraries are finally used for fitness assays in the absence or presence (CS) of selection for TPP production.
ITpp library, with high reproducibility across biological replicates (Figure S1E). The relative gene fitness in each condition was calculated from strain barcode abundance (log2 fitness) using the relative abundance in the Tn libraries at time 0 (BarSeq; Wetmore et al., 2015).

Iron and Sulfur Significantly Impact TPP Production

We applied a two-step methodology for identifying genes and biological functions with a significant condition-specific fitness phenotype (top/bottom 5%; see also Supplemental Experimental Procedures), or a significantly increased/reduced relative abundance of TPP-producing Tn mutants compared to either time 0 or mutants carrying the backbone-only plasmid (LMck). First, extreme fitness values were identified by setting top and bottom thresholds for each condition. These values were used to build a factorized matrix with values of +1 or −1 corresponding to significantly increased or decreased fitness, respectively, which was later used to establish gene-to-condition associations for functional enrichment (DAVID; Huang et al., 2009) (Figure 2A).

We focused our analysis on two effects: the effect of having biosynthetic genes for TPP compared to control backbone-only plasmid and the effect of selecting for intracellular TPP compared to no selection. In both cases, we expected that the deletion of a gene encoding factors important for the biosynthesis of TPP, which was not provided in the cultivation media, or for replenishing cellular resources would lead to relatively reduced fitness compared to the whole mutant population.

In the presence of the TPP heterologous pathway, but without selective pressure (FTPp), we identified 138 genes with significant fitness changes, of which 102 exhibited reduced and 36 exhibited increased fitness (Figure S2A; Table S1). Knockouts of genes affecting cofactor or substrate supply to the TPP pathway showed fitness defects: rpn (ΔF: fitness difference to control: −1.0) and rucA (ΔF: −1.3), implicated in ribose metabolism; bfr (ΔF: −1.1) and yaaA (ΔF: −0.8), implicated in iron homeostasis; and dxs, involved in DXP biosynthesis. We also found enrichment for knockouts of genes involved in protein folding (Table S1; p < 0.05, with Bonferroni correction for multi-hypothesis testing). During selection for TPP without the TPP heterologous pathway (fMckCS), Tn insertions in several additional genes involved in cellular iron homeostasis (fes, fmtA, and cueO) and the Gene Ontology (GO) class “water-soluble vitamin biosynthesis functions” (GO:00067677; p < 0.05; Figure S2B; Table S1) showed reduced fitness. Overall, this result indicates that TPP biosynthesis relies strongly on the cell protein and vitamin synthesis apparatus, especially cellular iron availability. This result also highlights that our synthetic TPP biosensor is sensitive to the concentration of endogenous TPP.

We next studied the effect of selecting for TPP in the presence of the heterologous TPP pathway (FTPpCS). We compiled a list of 45 genes with significant fitness changes, of which 27 were specific to this condition (e.g., with a neutral phenotype in the absence of selection or biosynthetic genes; Figure 2B; Figure S2C and S2D). This set of genes was functionally enriched for iron and glutathione ABC transporters (Kyoto Encyclopedia of Genes and Genomes [KEGG] pathway, DAVID; Bonferroni-corrected p < 0.01), involvement in the sulfur-compound biosynthetic process (GO:0044272, p ≥ 0.05), and DNA restriction and modification (GO:0009307, p < 0.01). In addition, similar phenotypes were shared by functionally related genes: reduced Fe-S cluster
availability (csdE, cysE, and ccmC mutations) presented reduced fitness (Figure 2B, bottom), while gene knockouts that were involved in sulfur assimilation, major redox regulators OxyR and SoxR, and had DNA restriction genes resulted in a positive fitness shift (Figure 2B, top). Indeed, the pTHld pathway was more stable in a ΔhsdMR knockout compared to wild-type (Figure S3), possibly suggesting direct cleavage by this endonuclease.

SAM turnover during TPP biosynthesis requires extensive NADPH reductive power (Chen et al., 2015). NADP+ can increase cellular oxidation, impair Fe-S cluster formation, and cause accumulation of hydrogen peroxide and reactive oxygen species (ROS), all tightly controlled by OxyR-SoxR regulons (Imlay, 2015). We tested the effect on TPP titer from limiting Fe-S clusters and the activation of OxyR-SoxR regulons. Sequestration of intracellular unbound iron by iron chelators o-phenanthroline and 2,2'-dipyridyl (Imlay et al., 1988) led to a small but significant reduction in TPP titer already at low concentrations (p < 0.02, red bars). These effects were more significant at 5-fold higher compound concentrations, (Figure 2C, blue bars), indicating that free iron and Fe-S clusters are limiting during TPP production and that the removal of ROS has an effect similar to that of the OxyR knockouts and regulon downregulation.

Elucidation of the Fe-S Cluster Biogenesis Network

We used a machine-learning algorithm to mine RefSeq gene descriptions (Tatusova et al., 2014) and quantified for each condition the effects of knocking out genes with biological functions related to iron, sulfur, cysteine, tyrosine, and ribose, which are cofactors or substrates involved in TPP biosynthesis (Chatterjee et al., 2008; Kriek et al., 2007). We also looked at cellular redox regulation, which is believed to influence cellular vitamin metabolism (Dougherty and Downs, 2006). We identified 108 genes in the *E. coli* genome related to these functions, among which, 57 genes (~53%) showed significant fitness shifts during selection for TPP production: 35 were associated with cofactor supply, and 25 were associated with cellular redox regulation (fTppCS and fTPP; p < 0.1 compared to a random set by random sampling with replacement or bootstrapping; Figure 3A). The presence of a significant number of genes involved in redox regulation suggests that oxidative stress can be relevant during TPP production.

To extend our analysis beyond a specific enzyme or transporter, we quantified the roles of the production phenotypes of parent GO classes (Keseler et al., 2009) associated with genes with extreme fitness phenotypes. We found that mutants of “cellular iron homeostasis” (GO: 0006879) genes had a significant low-fitness phenotype during selection for TPP (p < 0.1; Table S2); however, mutations in genes involved in iron, siderophores, and ferric-enterobactin transport (GO: 00015682,
0015684, 0015685, and 015891) were associated with significantly higher fitness (p < 0.1; Figure 3Bi; Figures S4A and S4B).

In bacteria, sulfur is mainly assimilated in the cell in a reduced form, as hydrogen sulfide from sulfate, and is incorporated into the amino acids cysteine and methionine. We found that the average fitness of mutants in genes involved in "sulfate assimilation" (GO: 00009086), but not cysteine biosynthesis (ΔF: ΔcysE, −1.5), led to increased fitness (p < 0.1) (Figures S4D and S4E). In E. coli, the sulfur found in Fe-S clusters is derived from cytosolic L-cysteine mainly through the enzyme IscS (cysteine desulfurase) and the conversion of L-cysteine to L-alanine. We could not obtain fitness data for members of the ISC complex, likely because of its essentiality, but the deletion of the second sulfur-accepting complex—the CSD sulfur transfer system—showed reduced fitness upon selection for TPP (ΔF: ΔcscA, −0.9; ΔcscD, −3.4) (Figure 3Bii). Surprisingly, we found that mutants in the SUF system for iron-sulfur cluster assembly that is used under iron starvation or oxidative stress conditions (Oudoten et al., 2004) exhibited higher fitness (ΔF, ΔsufS: +0.4, ΔsufA: +0.7) (Figure 3Bii).

The process of inclusion of Fe-S clusters in enzymes in E. coli is highly sensitive to the environment and its redox state (Crack et al., 2014; Ding et al., 2005). Tn insertions in soxR and oxyR both showed higher fitness during selection for TPP (ΔF, respectively, +1.0 and +1.13). In addition to the suf operon, we found that insertions in other components of this response pathway had similar effects: the iron chelators yaaA and dps (ΔF: +1.4 and +0.6, respectively); yhcn(ΔF: +0.6), which is induced during peroxide stress (Lee et al., 2010); and the chaperone Hsp33 (ΔF: Δhsp33O: +0.4). During oxidative stress, both OxyR and SoxR upregulate the fur regulon that is regarded to play a key role in maintaining the stability of cellular iron levels (Seo et al., 2014). Ferritin and enterobactin have, respectively, key iron storage and iron uptake functions in E. coli. Bacterioferritin, whose expression is controlled by Fur via the small regulatory RNA RyhB, is important for the impairment of glutathione import to the cytosol and enterobactin completely disrupted the TPP titer (ΔF, ΔsufEntF; Figure 4A). In contrast, knockouts of two genes induced by Fur-OxyR regulons—bfr and yaaA—which mutants showed fitness improvements in competitive assays (Figure 3Biv), yielded higher extracellular TPP titers (Δbfr: +0.3 ± 0.2, ΔyaaA: +0.4 ± 0.1, fold difference from mean titer; see also Figure S5), compared to the average titer across all knockouts and wild-type.

We then investigated pathways involved in S-incorporation into Fe-S in E. coli, including free cytosolic cysteine. TPP output decreased, as expected from previous reports (Agar et al., 2000; Boyd et al., 2008; Giel et al., 2013), in the two test loci Δmrp and ΔiscAUS (fold difference: −0.8 ± 0.04 and undetected, respectively). In contrast, knockout of the repressor iscR resulted in a higher TPP titer (+0.7 ± 0.06; Figure 4B). We found that disrupting cysteine formation and the mobilization of its sulfur by the cellular sulfur transfer system CSD significantly decreased the TPP titer compared to the mean knockout effect (ΔcysE: undetected; ΔcscD-ygdK, −2.7 ± 0.09), which is in agreement with the reduced fitness of mutants in its components (Figure 3Bii). We previously found that mutants in the E. coli SUF sulfur transfer system and in various proteins involved in sulfate assimilation and export exhibited improved growth during TPP selection (Figure 3Bii). The TPP output of single-locus knockouts agreed with these observations: the average extracellular TPP titers were higher in these knockouts.
compared to other knockouts and wild-type (fold difference: D_{sufAS}, +0.4 ± 0.2; D_{cysN}, +0.6 ± 0.1; D_{cysP}, +0.5 ± 0.04; D_{eamA}, +0.7 ± 0.2) (Figure 4B).

The remaining tested loci encoded proteins involved in redox control of a number of cellular functions, particularly iron homeostasis, which is tightly regulated by the SoxR-OxyR-Fur regulons (Jang and Imlay, 2010; Seo et al., 2014). The OxyR regulon is activated by an environment that favors disulfide bonds, in which glutathione plays a key role (Georgiou, 2002), and by nitric oxide via S-nitrosylation (Seth et al., 2012). Deletion of the narVYZ locus, for which a mild fitness effect was calculated (D_{F}, +0.4), showed TPP titers close to the knockout average (D_{narVYZ}, 0.10 ± 0.3) (Figure 4C). In contrast, we found that knockouts of the three predicted activators of the OxyR regulon exhibited significantly reduced TPP titers: ΔdsbA, which is involved in disulfide bond formation (Depuydt et al., 2009) (-1.8 ± 0.2), $\Delta\text{ylgA}C$ (-1.7 ± 0.3), and ΔnapCG (undetected). Mutants in these loci showed reduced fitness during TPP production, whereas those in the SoxR-OxyR regulons had higher fitness. These observations suggest a role for the SoxR-OxyR regulon in diminishing thiamine biosynthesis. Indeed, knockouts of two downstream genes activated by OxyR—the peroxide-response genes yhcN (Lee et al., 2010) and yggX (Gralnick and Downs, 2003)—had higher extracellular TPP titers (fold difference: D_{yggX}, +0.6 ± 0.1; $D_{\text{argR-yhcN}}$, +1.3 ± 0.1) (Figure 4C), in agreement with the shifts in fitness of their pooled mutants (Figure 3Biii; Table S3).

Figure 4. TPP Quantification in a Set of Genetic Targets

(A–C) Extracellular titers for individual locus deletions compared to the average titers across all strains (fold difference; for absolute values, see Figure S5). Strains are grouped in three different sub-networks involved in Fe-S biogenesis: iron supply (A), sulfur supply (B), and oxidative regulation (C). Asterisk indicates test KO; fitness bar of multi-gene loci shows average. Error bars indicate SD; n = 3–5. See also Figure S5 and Table S4.

Tuning of Central Fe-S Control

We examined the role of specific regulators of the complex $E.\text{coli}$ SoxR-OxyR-Fur regulons during TPP production. We quantified the extracellular TPP titer obtained with D_{soxR}, D_{oxyR}, and D_{fur} single-gene knockouts introduced in $E.\text{coli}$ strain TOP10, which lacks DNA restriction systems, and the production strain BS134. We found that, compared to the background strains, the deletion of SoxR did not lead to increased TPP titers, but the deletion of both OxyR and Fur dramatically increased pathway output in both TOP10 and BS134 (Figures 5A and 5B, respectively). This result pinpointed the OxyR-Fur regulon, which directs iron homeostasis (Seo et al., 2014), as the central cellular response to TPP production.

In order to determine whether this response and Fe-S cluster formation could be tuned via the identified genetic targets, we overexpressed the following genes as GFP fusions (Kitagawa et al., 2005): iscS, dsbA, csdA, oxyR, yhcN, yncD, and tonB, in the same strain BS134 used for knockouts. Compared to knockouts, TPP titers resulting from gene overexpression showed an opposite shift. In particular, the titer increased during overexpression of iscS and dsbA, whereas it decreased during overexpression of oxyR, yhcN, and yncD (Figure 5C).
DISCUSSION

The study shows that, by coupling the growth of genome-wide bar-coded Tn mutants to a biosynthetic product, it is possible to identify product-specific metabolic and regulatory bottlenecks. We show that disruptions in the assimilation of certain forms of iron and sulfur led unexpectedly to improved fitness upon selection for TPP production (Figures 3Bi and 3Bii), a result that was supported by measuring the extracellular TPP titer from individual gene knockouts (Figure 4). Further, overexpression of tonB, involved in the uptake of iron-siderophore chelates, led to a significant decrease in TPP titer (Figure 5C). We included in our validation genes that are poorly characterized or of only predicted function, which constitute the so-called Y genes within the E. coli genome, and that have strong fitness phenotypes with regard to TPP production. Two genes in particular have predicted function in siderophore uptake (yncD, a TonB-dependent receptor) and aryl-sulfate assimilation (yidJ, a predicted sulfatase). Both yncD and yidJ knockouts exhibited TPP titers 20%–25% higher than that of wild-type cells (Figure 4), further confirming that certain assimilatory activities may play a role in inhibiting TPP biosynthesis, possibly through the regulator Fur.

Applied to TPP biosynthesis, genetic-metabolic coupling uncovered that the regulation of Fe-S homeostasis mediated by OxyR–Fur regulons diminishes biosynthetic output by depleting or sequestering cellular Fe-S clusters. In fact, Fe-S clusters are critical for the function of TPP pathway enzymes ThiC and ThiH. The effects of changing global regulators are notoriously idiosyncratic. Nevertheless, TPP-coupled fitness data of mutants in the regulons could be reproduced in different E. coli strains and production plasmids (Figures 5A and 5B). Although mutants were not screened for fitness against wild-type cells at the population level, nine of ten selected high-fitness mutants, when introduced in wild-type, exhibited an extracellular TPP titer 0.2- to 2-fold higher (with the exception of narVYZ), while, excluding yidJ, all other low-fitness mutants exhibited significantly lower titers (Figure 4). We also demonstrate that population-wide mutant fitness data could serve as a basis for tuning a heterologous pathway through overexpression of genetic targets from multi-copy plasmids (Figure 5C).

The characterization of how important parts of the E. coli stress response and nutrient assimilation affect a complex, heterologous pathway and the identification of poorly characterized genes—which, today, still represent ~30% of the E. coli genome, contributing to this response—demonstrate the power of genetic-metabolic coupling for the identification of target genes for the metabolic engineering of a specific biosynthetic product.

EXPERIMENTAL PROCEDURES

Strains and Plasmids

Plasmid DNA, PCR products, and gel extractions were prepared with appropriate kits (QIAGEN). Synthetic oligonucleotides were purchased from Integrated DNA Technologies (IDT). In-frame GFP fusions of selected genes for expression from multi-copy plasmids were obtained from the ASKA library (Kitagawa et al., 2005). Single-locus deletions were constructed by using lambda red recombineering. The thiamine selection system (pTPP_Bios) was described in a previous study from our laboratory (Genee et al., 2016). The TPP biosynthetic pathway was assembled from native E. coli MG1655 genes via PCR amplification. A detailed description of the molecular tools is provided in the Supplemental Information.

Analytical Quantification of TPP

Extracellular TPP concentration was measured using a modified thiochrome high-performance liquid chromatography (HPLC) assay procedure. Briefly,
fresh colonies carrying either pTHiD or pTHiM were inoculated into 1 mL MOPS-rich media lacking thiamine and containing 30 μg/mL chloramphenicol and 50 μg/mL spectinomycin. Cultivations in deep-well plates were brought twice to saturation in a 48-hr period (Supplemental Information).

Construction of Tn Mutants and TnSeq and BarSeq protocols
For construction of tagged Tn mutants of E. coli MG1655 and bioinformatic analysis of NGS data, we relied on reported methodology and tools (Wetmore et al., 2015). BarSeq reads are inserted into a table reporting the number of times each bar code is observed using a custom Perl script (MultiCodes.pl). Given a table of bar codes, in which they map in the genome and their counts in each sample, strain and gene fitness values are estimated with a custom R script (FEBAR) (Supplemental Information). The bioinformatic tools can be accessed at https://bitbucket.org/berkeleylab/feba.

Calculation of Gene Fitness
Gene fitness is the weighted average of Tn mutant strain fitness within the gene; that is, strains with more reads have less noisy fitness estimates and are weighted more highly. In more detail, we first selected a subset of strains and genes that have adequate coverage in the time-zero samples (at least two reads per strain and 20 reads per gene are considered adequate). Only strains that lie within the central 10% to 90% of a gene coding region are considered. Then, for each sample:

Strain fitness = \(\log_2 \left(\frac{n_{\text{new}} + \sqrt{v}}{n_0 + \frac{1}{\sqrt{v}}} \right) \)

where \(v \) is a “pseudocount” to control for very noisy estimates when read counts are very low. (Further details can be found in the Supplemental Information and in Wetmore et al., 2015.)

SUPPLEMENTAL INFORMATION
Supplemental Information includes Supplemental Experimental Procedures, five figures, and four tables and can be found with this article online at http://dx.doi.org/10.1016/j.celrep.2017.07.015.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS
We thank Dr. Adam Deutschbauer (Lawrence Berkeley National Laboratory) for kindly providing strains and plasmids utilized here for Tn mutagenesis. We also thank Dr. H. Genee and Dr. L. Gronenberg (Biosyntia ApS) for donating the source molecular parts for producing and selecting thiamine derivatives and for establishing analytical protocols. We also thank Dr. Lei Yang and Perrine Smith (iLoop – DTU Biosustain) for constructing strain BS134 and Dr. Anna Koza for technical support with Illumina sequencing.

This research was funded by the European Union Seventh Framework Programme (FP7-KBBE-2013-7-single-stage) under grant no. 613745 “Promys” and by the Novo Nordisk Foundation (NNF) grant no. 11355-44 “Biobase.” F.G.T. acknowledges NNF PhD fellowship grant no. NNF16CC0029068. M.O.A.S. acknowledges additional funding from the NNF.

Received: January 24, 2017
Revised: May 16, 2017
Accepted: July 7, 2017
Published: August 1, 2017

REFERENCES

