New approach for validating the segmentation of 3D data applied to individual fibre extraction

Monica Jane Emerson
monj@dtu.dk
The CINEMA alliance
the alliance for Imaging and Modelling of Energy Applications

• AIM:
 • Develop methods to characterise the internal structure of complex materials used for energy technologies.
 • Correlate performance under realistic conditions to the microstructure and its changes.

• PURPOSE: Optimise materials to make devices
 • More efficient
 • Longer lasting
 • Lower in cost
Uni-directional fibre reinforced composites

References
Individual fibre segmentation

• **AIM:**
 Extract/segment fibres individually from tomograms of UD glass and carbon fibre reinforced composites with high fibre volume fraction.

• **PURPOSE:**
 Relate fibre orientation to compression strength

Reconstructed volume Slices Centre detections over slices Fibre trajectories

References
Individual fibre segmentation: orientation

References
Individual fibre segmentation: compression

\[\sigma_c = \frac{G}{1 + \frac{\theta}{\gamma}} \]

<table>
<thead>
<tr>
<th>Material</th>
<th>GFRP</th>
</tr>
</thead>
<tbody>
<tr>
<td>< θ ></td>
<td>2.75°</td>
</tr>
<tr>
<td>< $</td>
<td>\theta_x</td>
</tr>
<tr>
<td>< $</td>
<td>\theta_y</td>
</tr>
<tr>
<td>σ</td>
<td>0.44 GPa</td>
</tr>
<tr>
<td>σ_x</td>
<td>0.49 GPa</td>
</tr>
<tr>
<td>σ_y</td>
<td>1.14 GPa</td>
</tr>
<tr>
<td>σ_m</td>
<td>(0.82 ± 0.07) GPa</td>
</tr>
</tbody>
</table>

References
Individual fibre segmentation: validation

Centre points over a small region from the test image with a scale bar indicating 40 μm. In yellow the reference points from the manual annotation and in red the detected ones, missed detections are circled in pink.

References
Individual fibre segmentation: applications

- Micromechanical finite element modeling.
- Understanding damage in fibre composites.
- Quantification for each bundle.
 - Number of fibres
 - Contact points
 - Average diameter per bundle
 - Fibre volume fraction
 - Tex value [g/km], amount of fibre material per km.

(a) The normal horizontal stress contour plot of a transverse loaded 45° backing bundle and (b) the 3D structure where the resulting constitutive law will be implemented.

References
Individual fibre segmentation: applications

- Understanding fracture initiation and progression under tensile loading.
- Understand fibre microbuckling and kink-band formation.

References
Wang Y, Emerson MJ, Dahl VA, Conradsen K, Dahl AB and Withers PJ. Understanding the evolution of fibre micro-buckling leading to kink bands by means of computed tomography and image analysis. *In progress, to be submitted 2017.*
Validation of geometrical parameters estimated from tomograms applied to fibre composites

References
Validation of geometrical parameters estimated from tomograms applied to fibre composites

References
Validation of geometrical parameters estimated from toomograms applied to fibre composites

Diameter distributions for the XCT image using the four different single diameter estimation methods.

References
Validation of geometrical parameters estimated from tomograms applied to fibre composites

Diameter distributions for the different modalities

<table>
<thead>
<tr>
<th>Modality</th>
<th>SEM</th>
<th>OM</th>
<th>XCT (min)</th>
<th>mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>average</td>
<td>15.85</td>
<td>16.02</td>
<td>15.44</td>
<td>15.77</td>
</tr>
<tr>
<td>std</td>
<td>1.30</td>
<td>1.17</td>
<td>1.13</td>
<td>1.2022</td>
</tr>
</tbody>
</table>

References
Validation of geometrical parameters estimated from tomograms applied to fibre composites

References
Conclusions

• Described a pipeline for individual fibre segmentation applicable to large scans that do not need to be high quality and can contain densely packed fibres.

• Introduced a range of applications for this pipeline.

• Presented our initial work regarding quantitative validation, important so that we can trust future models and estimations derived from the use of this pipeline.