Investigation of process parameters influence on flash formation in injection moulding of polymer micro features through design of experiments

Eladl, Abdelkhalik ; Tosello, Guido; Mostafa, Rania ; Soltan, Hassan ; Hansen, Hans Nørgaard

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Investigation of process parameters influence on flash formation in injection moulding of polymer micro features through design of experiments

Abdelkhalik Eladl1, 2, Guido Tosello1, Rania Mostafa2, Hassan Soltan2, Hans N. Hansen1
1Technical University of Denmark, Department of Mechanical Engineering, Denmark
2Mansoura University, Faculty of Engineering, Production Engineering and Mechanical Design Department, Egypt

Abstract
Micro injection moulding is one of the key technologies for micro manufacture due to its mass-production capability and relatively low component cost. Flash defects are among the most critical issues in the replication of micro features and constitute a manufacturing constraint in applying injection moulding in a range of micro engineering applications. In the present research the effects of four processing parameters on the amount of flash on a micro finger test structure were investigated using two different polymer materials and applying DOE approach. In particular, the following process parameters were considered: injection speed, holding pressure, melt temperature and mould temperature. The study revealed that for the materials with lower viscosity the injection speed, followed by barrel temperature, are the most influential factors for increasing the amount of flash. On the other hand, barrel temperature, injection velocity, and mould temperature resulted as the most influential parameters for increasing the amount of flash. Conversely, the holding pressure did not have a clear effect on the flash amount.

Material, Method and equipment
Injection moulding experiments were carried out on an Arburg (Allrounder 370 A) injection moulding machine which has maximum clamping force 60 tons with screw diameter of 18 mm. A commercially available unfilled material polypropylene (PP, trade name 400-GA05), manufactured by INEOS Olefins polymers Europe and acrylonitrile butadiene styrene (ABS, trade name Terluran GR35) manufacturing by BASF were applied as the polymer materials in this study. The investigated parameters were: injection speed (V_i), holding pressure (P_h), melt temperature (T_m) and mould temperature (T_m). These parameters were considered as the factors affecting the capability of the micro injection moulding process. By considering the injection moulding machine capability and the materials properties different injection process setting were selected for the statistical design of experiments, see table 1.

<table>
<thead>
<tr>
<th>Injection moulding process parameters</th>
<th>Law level (-)</th>
<th>Law level (+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection speed PP</td>
<td>140 mm/s</td>
<td>220 mm/s</td>
</tr>
<tr>
<td>Holding pressure PP</td>
<td>10 MPa</td>
<td>60 MPa</td>
</tr>
<tr>
<td>Holding pressure ABS</td>
<td>20 MPa</td>
<td>70 MPa</td>
</tr>
<tr>
<td>Melt temperature</td>
<td>240 °C</td>
<td>270 °C</td>
</tr>
<tr>
<td>Mould temperature</td>
<td>20 °C</td>
<td>60 °C</td>
</tr>
</tbody>
</table>

The part is a rectangular shape (20mm×10mm×1.5mm) with four fingers. The four fingers have the same length of 15 mm, the same width of 3 mm, and different thicknesses 0.7 mm, 0.5 mm, 0.3 mm and 0.1 mm, see figure 1.

Results and discussion
A fixed position on the molded parts was selected for flash amount comparison. An optical quality control CNC measuring machine was used to take microscopic photographs for evaluating the flash amount formation in corresponding positions of moulded parts for each experimental run for both materials PP and ABS see Figure 2. For the first comparison we can see that the amount of flash formation for PP material is higher than ABS material for all the corresponding 16 DOE treatments leading due to the difference on viscosity where the PP is a material having a low viscosity, which is better for filling the micro features but on the other hand it favours for flash creating.

Conclusion
This paper investigate the effect of four processing parameters injection velocity V_i, holding pressure P_h, melt temperature T_m and mould temperature T_m using flash amount as an experiment output response. Polypropylene (PP) and Acrylonitrile Butadiene Styrene (ABS) grade were used for the injection moulding process. The DoE approach has been applied to assess the effects of the selected four parameters, varying between a maximum and a minimum value. Experimental results and statistical analysis showed that the flash amount created when moulding the PP material is larger than the flash amount for the ABS material. For the PP material, the injection velocity followed by holding temperature were the most influential parameters on the flash amount formation. However, the melt temperature followed by injection velocity are the most influential parameters effect on the flash amount in ABS material moulding. In conclusion, in order to replicate high quality parts, the correct adjustment of the process parameters is crucial. In particular, an increase in injection velocity and melt temperature showed an increase in flash, choice of polymer also had a high effect on both the accuracy of the part and flash formation.

Reference

Acknowledgement
The authors would like to acknowledge the support from Department of Mechanical Engineering, Technical University of Denmark, Denmark and Egyptiancultural affairs & mission sector, Egypt.