Ligations of Gold Atoms with Iron Porphyrin

Zhang, Ling; Kepp, Kasper Planeta; Ulstrup, Jens; Zhang, Jingdong

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Ligations of Gold Atoms with Iron Porphyrin

Ling Zhang, Kasper P. Kepp, Jens Ulstrup, and Jingdong Zhang
Department of Chemistry, Technical University of Denmark, Building 207, Kemitorvet, DK–2800 Kgs. Lyngby, Denmark
linzh@kemi.dtu.dk

Gold is an exotic material with d-electrons deciding electronic mappings and configurations of adsorbed molecules. The specific interaction of Au atoms and S-, N-capped molecules make gold nanoparticles widely applied in the medicine transport and immunoassay. Density functional theory demonstrates that the electronic structure of Au adatoms is d9s1 but not d10s0 in the forms of Au-thiolates. The surrounding Au surface atoms are passivated leading to both Au-Au and S-S interactions. A wide range of surface phenomena of nanoparticle size-control and break-junctions in surface physics and chemistry including electrochemistry and electrochemical scanning tunneling microscopy (in situ STM) are explained with this theory.

Iron porphyrin is a well-known active redox center of cytochrome c and hemoglobin/myoglobin assisting membrane-crossing electron transfer or blood oxygen transport. The electronic states and configurations of iron porphyrin affect the electrochemical properties of the metalloproteins, where the artificial constructed proteins are designed by the mutations of amino residues or the structural optimizations of iron porphyrins.

Iron porphyrin adsorption on graphite and graphene surfaces by n-n electron stacking has been widely studied and the catalytic activity found to be enhanced warranting the notion of enzyme mimics. Weak physisorption was, however, recently observed by in situ STM, but the electronic properties of iron porphyrin adsorbed on gold has not been addressed before. This issue is, however, critical. We report here a study of iron porphyrin on the three low-index Au-surfaces using a combination of electrochemistry and density functional theory (Figure 1).

References

Figure 1. (A) Schematic model of iron porphyrin adsorbed onto single-crystal Au(111) surface. (B) In situ STM image of iron porphyrin adsorbed on Au(111) surface at pH 12.