Microrobots to Manipulate Cells

Glückstad, Jesper

Publication date: 2017

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Microrobots to Manipulate Cells

Jesper Glückstad

DTU Fotonik, Dept. of Photonics Engineering
Techn. University of Denmark, Ørsted Plads 343
DK-2800 Kgs. Lyngby, Denmark

At DTU Fotonik we developed and harnessed the new and emerging research area of so-called Light Robotics including the 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time laser-manipulated in a 3D-volume with six-degrees-of-freedom. To be exploring the full potential of this new micro drone-like approach in challenging microscopic geometries requires a versatile and real-time reconfigurable light coupling that can dynamically track a plurality of “drones” to ensure continuous optimal light coupling on the fly. Our latest developments + tech-transfer plans in this new and exciting area will be reviewed in this presentation.