Bloch simulation and MR fundamentals visualized

Lars G. Hanson1,2

1 Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Denmark
2 Center for Magnetic Resonance, DTU Elektro, Technical University of Denmark, Lyngby, Denmark.

The MMCE conference offers a unique opportunity to reflect on established concepts. In two earlier MMCE meetings, I have discussed aspects of particular relevance to educators and students in the field of MR:

1. Myths often affecting introductory MR. These include wrong notions that nuclear magnetic moments align either parallel or anti-parallel to the magnetic field, and that spectra reflect sudden jumps between quantum eigenstates \cite{1}.

2. The validity of classical spin-visualizations, and the meaning that can be attributed to such from a Quantum Mechanics perspective \cite{2}.

This year’s presentation concerns Bloch simulations and visualization of MR fundamentals for early MR education. It is a natural continuation where seeds sown earlier yield a crop. Having established the validity of apparently classical visualizations from a quantum perspective (when interpreted with care), the topic is discussed with the help of interactive simulations using freely available educational software.

The presentation is targeted at people with a need to understand and communicate basic aspects of MR. Hence it is partly given as a tutorial on familiar concepts. The main tools employed is the CompassMR web page and app \cite{3} aimed at Day 1 of NMR/MRI education, and the Bloch Simulator web application \cite{4} that are useful for 3D visualization of uncoupled spin $\frac{1}{2}$ dynamics. The latter is used to interactively explore a wide range of basic concepts and phenomena, including on and off resonance dynamics, frames of reference, relaxation, dephasing, echo formation, coherence pathways, and spatial encoding.

References

\cite{2} The Ups and Downs of Classical and Quantum Formulations of MR, in „Anthropic Awareness: The Human Aspects of Scientific Thinking in NMR…”, edited by Csaba Szantay Jr., Elsevier 2015.

\cite{3} Hanson L. G., Interactive web site and app for early magnetic resonance education, Physica Medica 2016, 32(3):258, \url{http://drcmr.dk/CompassMR}

\cite{4} Hanson L. G., A Graphical Simulator for Teaching Basic and Advanced MR Imaging Techniques, RadioGraphics 2007, 27(6):e27, \url{http://drcmr.dk/bloch}