Voltage-stabilised elastomers with increased relative permittivity and high electrical breakdown strength by means of phase separating binary copolymer blends of silicone elastomers

A Razak, Aliff Hisyam; Yu, Liyun; Skov, Anne Ladegaard

Published in:
R S C Advances

Link to article, DOI:
10.1039/c7ra02620j
10.1039/c7ra02620j

Publication date:
2017

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Electronic Supplementary information

Voltage-stabilised elastomers with increased relative permittivity and high electrical breakdown strength by means of phase separating binary copolymer blends of silicone elastomers

Aliff Hisyam A Razak1,2, Liyun Yu1 and Anne Ladegaard Skov1

1 Danish Polymer Center, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 227, 2800 Kgs. Lyngby, Denmark.
2 Faculty of Engineering Technology, University of Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.

1) Calculation of engineering stress and strain

The engineering stress (σ_E) was calculated from the force (F) and the cross-sectional area of the strip (A):

$$\sigma_E = \frac{F}{A} = \frac{F}{t \times w} = \frac{\tau \cdot d}{t \cdot w}$$

Equation 1

where $A = \text{film thickness} \cdot \text{constant width} (w = 6 \text{ mm})$ and $F = \text{torque} \cdot \text{drum diameter} (d = 10.3 \text{ mm})$.

The engineering strain (ε_E) was calculated as a ratio of a stretched strain ($L - L_0$) to an initial strain (L_0) as:

$$\varepsilon_E = \frac{L - L_0}{L_0}$$

Equation 2

where a final strain after stretching (L) was determined from Hencky strain (ε_H) as follows:

$$\varepsilon_H = \ln \frac{L}{L_0}$$

Equation 3

$$L = L_0 e^{\varepsilon_H} = L_0 e^{(r_H t_s)}$$

Equation 4

where ε_H is a product of Hencky rate ($r_H = 1 \times 10^{-3} \text{ rotation/s}$) and step time ($t_s$).

By putting equation (4) in (2), the final expression of engineering strain (ε_E) was obtained as below:

$$\varepsilon_E = e^{\varepsilon_H} - 1$$

Equation 5

Young’s moduli were determined from slopes in the linear regime of stress-strain plots at 5 % strain.
2) NMR spectra of synthesised copolymers

The NMR spectra for synthesised PDMS-PPMS and PDMS-PEG copolymers are shown in Figures S1–S5.

a) PDMS-PPMS copolymer (80DMS_2PMS, $C_{C_6H_{16}} = 8.4 \cdot 10^{-4}$ mol g$^{-1}$)

1H-NMR (CDCl$_3$, 300 MHz): δ -0.02 - δ 0.6 (m, 6 H’s, -SiO(C$_3$H$_3$)$_2$-), δ 4.70 (m, 1 H, -SiH-), δ 7.10 - δ 7.60 (m, 5 H’s, -SiC$_6$H$_5$-).

Figure S1 The NMR for 80DMS_2PMS.

b) PDMS-PEG copolymer (PDMS81-PEG)

1H-NMR (CDCl$_3$, 300 MHz): δ 0.05 - δ 0.09 (m, 6 H’s, -Si(CH$_3$)$_2$O-), δ 3.50 - δ 3.70 (m, 4 H’s, -C$_2$H$_4$O-), δ 0.98 - δ 1.03 (t, 2 H’s, -SiCH$_2$-), δ 3.53 - δ 3.57 (m, 2 H’s, -CCH$_2$O-).

Figure S2 The NMR for PDMS81-PEG.
c) PDMS-PEG copolymer (PDMS14-PEG)

1H-NMR (CDCl$_3$, 300 MHz): δ 0.05 - δ 0.09 (m, 6 H’s, -Si(CH$_3$)$_2$O-), δ 3.50 - δ 3.70 (m, 4 H’s, -C$_2$H$_4$O-), δ 0.98 - δ 1.03 (t, 2 H’s, -SiCH$_2$-), δ 3.53 - δ 3.57 (m, 2 H’s, -CCH$_2$O-).

Figure S3 The NMR for PDMS14-PEG.

d) PDMS-PEG copolymer (PDMS7-PEG)

1H-NMR (CDCl$_3$, 300 MHz): δ 0.05 - δ 0.09 (m, 6 H’s, -Si(CH$_3$)$_2$O-), δ 3.50 - δ 3.70 (m, 4 H’s, -C$_2$H$_4$O-), δ 0.98 - δ 1.03 (t, 2 H’s, -SiCH$_2$-), δ 3.53 - δ 3.57 (m, 2 H’s, -CCH$_2$O-).

Figure S4 The NMR for PDMS7-PEG.
e) PDMS-PEG copolymer (PDMS3-PEG)

1H-NMR (CDCl$_3$, 300 MHz): δ 0.05 - δ 0.09 (m, 6 H’s, -Si(CH$_3$)$_2$O-), δ 3.50 - δ 3.70 (m, 4 H’s, -C$_2$H$_4$O-), δ 0.98 - δ 1.03 (t, 2 H’s, -SiCH$_2$-), δ 3.53 - δ 3.57 (m, 2 H’s, -CCH$_2$O-).

![NMR spectrum](image)

Figure S5 The NMR for PDMS3-PEG.

3) SEM images

![SEM images](image)
Figure S6 SEM images cross-linked BCBs with: a) 10 phr PDMS81-PEG, b) 20 phr PDMS81-PEG, c) 10 phr PDMS14-PEG, d) 20 phr PDMS14-PEG, e) 10 phr PDMS7-PEG, f) 10 phr PDMS3-PEG, and g) 20 phr PDMS3-PEG.