Polaronic motion of self-trapped holes in silver halides

García Lastra, Juan María; Garcia-Fernandez, P.; Loftager, Simon; Aramburu, J.A.; Moreno, M.

Publication date:
2016

Document Version
Early version, also known as pre-print

Citation (APA):
Polaronic motion of self-trapped holes in silver halides

J. M. Garcia-Lastra¹, P. García-Fernández², S. Loftager¹, J.A. Aramburu², M. Moreno²,

¹Department of Energy Conversion and Storage, Technical University of Denmark. Fysikvej 309, 2800 Kgs. Lyngby, Denmark
²Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain

Self-trapped polarons (STPs) are probably the simplest example of defects in solids. They play a key role for explaining the charge transport in many relevant technologies, like organic light emitting diodes or Li-ion batteries. They are also the basis to explain many attractive phenomena like high-temperature superconductivity in the cuprates or colossal magnetoresistance in manganites.

The self-trapped hole (STH) in AgCl, for its relatively simplicity, represents a model system of STP for which it exists a vast amount of experimental data. EPR and ENDOR studies on silver halides started in 1968, proving the formation of a STH in AgCl, but not in AgBr. Laredo et al. showed that STHs in AgCl become mobile above ~35 K, demonstrating the existence of a dominant mechanism of polaronic hopping, involving an activation energy of 61 ± 3 meV. Optical absorption transitions associated with the STH in AgCl peaking at 1.2 eV have been measured experimentally. However, their origin has not been clarified yet.

Here we will try to respond, through a Density Functional Theory model, to some fundamental open questions on small polarons in AgCl and AgBr model systems: (i) What is the equilibrium geometry and the contribution of the local distortion to the binding energy of the STH in AgCl? (ii) How much localized is the STH in the AgCl₆⁺ complex in AgCl? (iii) Why is the STH stable in AgCl, but not in AgBr? (iv) What is the excitation responsible for the band peaked at 1.2 eV in AgCl? (v) By what mechanisms do the small polarons move through the AgCl lattice?

¹ Hohne, M.; Stasiw, M., ESR Detection Of Self-Trapped Holes In AgCl. Physica Status Solidi 1968, 28 (1), 247-&.