Electro-Oxidative Conversion and Process Intensification of Biomass derived 5-Hydroxymethylfurfural into 2,5-furandicarboxylic acid

Joya, Khurram Saleem; Chatzichristodoulou, Christodoulos; Holtappels, Peter

Publication date: 2016

Document Version
Peer reviewed version

Citation (APA):
ELECTRO-OXIDATIVE CONVERSION AND PROCESS
INTENSIFICATION OF BIOMASS DERIVED 5-
HYDROXYMETHYLFURFURAL INTO 2,5-FURANDICARBOXYLIC
ACID

Khurram S. JOYA1*, Christodoulos CHATZICHRISTODOULOU1, Peter
HOLTAPPELS1

1Department of Energy Conversion and Storage, Technical University of Denmark
(DTU), Frederiksborgvej 399, 4000 Roskilde, Denmark, E-mail: khsa@dtu.dk,
khurramdtu@gmail.com

2,5-Furandicarboxylic acid (FDCA) has been recognized among the top ten bio-based
chemical feedstocks owing to its use as a precursor in the synthesis of 100% natural,
biodegradable and 100% recyclable polymer-plastic PEF (polyethylene furanoate) that
will potentially replace the PET (Polyethylene terephthalate). FDCA can be
synthesized from easily available and biomass derived 5-hydroxymethylfurfural (HMF)
using heterogeneous phase catalysts or electrochemical route (Figure). Out of these
two processes, the electrochemical route is least explored but it is more viable for the
selective formation of FDCA, the selectivity of which can be tuned by electrode
potential and by the choice of electrocatalytic material, pH, electrolyte nature,
operating temperature and pressure. At DTU-Energy, we have expertise on
electrochemical systems operating under ambient pressure and under controlled high-
temperature and high-pressure environment. Here we show our electrochemical
studies for the HMF oxidation on polycrystalline Au, Pt, Cu and Ni foils, Ti-plate and
surface-modified Ti-plate with a RuO2 film deposited on it. Initial data suggest that
polycrystalline gold and platinum surfaces exhibit the lowest overpotential for the HFM
(0.5 wt %) oxidation in alkaline media. After product analysis using online HPLC to
determine the yield and selectivity, next step is to investigate HMF electrolysis using
a wide range of electrocatalytic materials at varying pH under high temperature and
high pressure conditions for process intensification.