3D X-ray CT of fatigue damage in fibre composites

Jespersen, Kristine Munk; Zangenberg Hansen, Jens; Lowe, Tristan; Withers, Philip J.; Mikkelsen, Lars Pilgaard

Publication date: 2016

Document Version Peer reviewed version

Link back to DTU Orbit

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
3D X-ray CT of fatigue damage in fibre composites

Kristine M. Jespersen1*, Jens Zangenberg2, Tristan Lowe3, Philip J. Withers3, and Lars P. Mikkelsen1
1Department of Wind Energy, Technical University of Denmark, Roskilde, Denmark (*kmunj@dtu.dk)
2LM Wind Power Blades, Composites Mechanics, Kolding, Denmark
3Manchester X-Ray Imaging Facility, School of Materials, University of Manchester, Manchester, United Kingdom

A uni-directional (UD) glass fibre composite made from a non-crimp fabric (NCF) was investigated by 3D X-ray computed tomography (CT) to study the fatigue damage at different stages of the fatigue life. The damage was found to appear as local UD fibre fracture regions close to the so-called supporting backing layer, which seemed to have an important role in the location of the damage initiation. Furthermore, the damage appeared as 3D regions containing both clusters and chains of fibre fractures, and it was concluded that considering this problem in 3D seemed to be important in order to obtain realistic results.

Fatigue damage in wind turbine blade materials

With a lifespan of around 20 years, a wind turbine blade experiences repeated loading in the order of 10^8 cycles, which is much higher than for most other structures. Therefore fatigue is one of the main limiting factors when designing long blades. However, the main load carrying parts of the blades are made from UD NCF composite and their fatigue damage mechanism is complex and not well understood. To improve the materials and decrease safety factors, it is important to gain understanding on the fatigue progression behaviour.

Experimental method

Fatigue tests (R=0.1) were carried out on four 410mm long butterfly shaped specimens and stopped at different number of cycles. X-ray CT experiments were performed on a Zeiss X-radia Versa 520. As the image resolution in X-ray CT scans is decreasing for increasingly large cross-sections, cut-outs were performed on a Zeiss X-radia Versa 520. As the image resolution in X-ray CT experiments are considered to obtain high resolution (1.2 μm voxel resolution). This results in m voxel resolution. This results in a small field of view (2.4mm), however high resolution is necessary to see individual UD fibre fractures.

Acknowledgements

- This research was conducted using mechanical testing equipment from DTU Center for Advanced Structural and Material Testing (CASMAT), Grant No. VRK023193 from Villum Fonden.
- We would like to acknowledge the assistance provided by the Manchester X-ray Imaging Facility, which was funded in part by the EPSRC (grants EP/F007906/1, EP/F001452/1 and EP/I022489/1)
- Financial support from CINEMA: "the allianCe for ImagIng of Energy MAterials", NSF-grant no. 1305-00328 under “The Danish Council for Strategic Research” is gratefully acknowledged.
- We would like to thank LM Wind Power for manufacturing of test specimens.

References