Gene cluster dynamics throughout the Aspergillus genus

Theobald, Sebastian; Vesth, Tammi Camilla; Rasmussen, Jane Lind Nybo; Frisvad, Jens Christian; Nielsen, Kristian Fog; Larsen, Thomas Ostenfeld; Lyhne, Ellen Kirstine; Kogle, Martin Engelhard; Kuo, Alan; Riley, Robert; de Vries, Ronald P.; Grigoriev, Igor V.; Mortensen, Uffe Hasbro; Baker, Scott E.; Andersen, Mikael Rørdam

Publication date: 2015

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Gene cluster dynamics throughout the Aspergillus genus


1) Department of Systems Biology, Technical University of Denmark, Kgs. Lyngby, Denmark
2) Joint Bioenergy Institute, Berkeley, CA, USA
3) Joint Genome Institute, Walnut Creek, CA, USA
4) Fungal Physiology, CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands

The genus Aspergillus has an enormous biosynthetic potential, which makes them excellent organisms for synthesis of natural compounds. However, it is proposed that industry has not yet revealed their full biosynthetic potential, especially in regard to non-ribosomal peptide and polyketide synthesis. At the same time, the demand for new pharmaceuticals is rising, making natural product discovery an important task in research and industry. Unfortunately, current methods rely on a vast amount of experimental work and cannot keep up with this demand.

In the aspMine project we are sequencing and analyzing 300 Aspergillus genomes to tackle this problem and increase the speed of natural product discovery using comparative genomics. Focusing on the section Nigri, we identified 3105 secondary metabolite biosynthetic gene clusters which we grouped together to find their distribution pattern throughout Aspergilli. Finally, we identified the gene cluster coding for Aurasperone B using this distribution pattern.

We think that we can greatly accelerate natural product discovery and provide insights into the gene cluster dynamics throughout the Aspergillus genus.