Characterization of a Wavelength Converter for 256-QAM Signals Based on an AlGaAs-On-Insulator Nano-waveguide

Da Ros, Francesco; Yankov, Metodi Plamenov; Porto da Silva, Edson; Pu, Minhao; Ottaviano, Luisa; Hu, Hao; Semenova, Elizaveta; Forchhammer, Søren; Zibar, Darko; Galili, Michael; Yvind, Kresten; Oxenløwe, Leif Katsuo

Published in:
Proceedings of the European Conference on Optical Communication

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Characterization of a Wavelength Converter for 256-QAM Signals Based on an AlGaAs-On-Insulator Nano-waveguide

(1) Department of Photonics Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark fdro@fotonik.dtu.dk

Abstract
High efficiency and broadband wavelength conversion in a 9-mm AlGaAs-On-Insulator waveguide is shown to provide high-quality (OSNR > 30 dB) idler generation over a 28-nm bandwidth enabling error-free conversion of 10-GBd 256-QAM with OSNR penalty below 2.5 dB.

Introduction
Current wavelength division multiplexed (WDM) communication systems rely on wavelength channels to route data through the network. In order to improve the wavelength utilization, as well as to decrease the blocking probability, the ability to shift a data channel from one wavelength to another is not only beneficial but strongly desirable1. Providing such functionality directly in the optical domain by all-optical wavelength conversion enables decreasing the number of converters by simultaneously processing multiple channels1. Additionally, wavelength conversion can enable more advanced functionalities such as Kerr nonlinearity mitigation through optical phase conjugation2,3.

As optical networks are pushed to boost the spectral efficiency by increasing the modulation format order from quadrature phase-shift keying (QPSK) to high-order quadrature amplitude modulation (QAM), a modulation-format independent operation is required for a wavelength converter to be practical. Therefore, the more stringent requirements in terms of phase noise and optical signal-to-noise ratio (OSNR) posed by high-order QAM signals need to be addressed. Low-penalty wavelength conversion for signals up to 64-QAM has been demonstrated using four-wave-mixing (FWM) in highly nonlinear fibers4. However, fiber-based converters require additional complexity to mitigate the impact of stimulated Brillouin scattering as well as long interaction lengths.

A strong focus has been devoted to investigate integrated solutions based on nonlinear materials such as silicon5 and silicon-germanium6, as well as silicon nitride7 and high index doped glass8. Among these, the former two are affected by two-photon absorption (TPA) at telecom wavelengths, while the latter two provide lower Kerr nonlinearity, both resulting in low conversion efficiency (CE) and limited idler OSNR. Therefore, a material platform offering high nonlinearity but without TPA is highly desired. AlGaAs has been shown to provide large intrinsic nonlinearity ($n_2 = 10^{-17}$ W/m2) and its material bandgap can be engineered to avoid TPA at 1550 nm9. To further enhance the effective nonlinearity, we have previously demonstrated the AlGaAs-on-insulator (AlGaAsOI) platform, where high-index contrast nano-waveguides can be realized with an ultra-high nonlinear coefficient enabling efficient nonlinear processes such as FWM9,10.

In this work, we extend our previous investigations9,10, by demonstrating wavelength conversion for 256-QAM signals over most of the C-band (28-nm bandwidth). The high conversion efficiency (CE) provided by AlGaAsOI is a key enabler for achieving idler OSNR levels in excess of 30 dB and thus fulfill the requirements for demodulating error-free (zero errors after FEC decoding) 256-QAM signals with limited OSNR penalty (<2.5 dB).

Four-wave mixing in AlGaAsOI
The AlGaAsOI nano-waveguide has been fabricated from a wafer prepared by wafer growth, wafer bonding and substrate removal. The waveguides, with a cross-section of \(290 \times 630 \text{ nm}^2\), have then been defined by electron-beam lithography and dry etching using hydrogen silsesquioxane (HSQ) as a hard mask. The waveguide length is 9 mm, the propagation loss 1.5 dB/cm for the TE mode and a low coupling loss of 1.4 dB/facet is achieved by using inverse tapers11. For the FWM characterization of the waveguide, a strong continuous wave (CW) pump has been coupled together with a weak CW signal into the waveguide and the measured CE, defined as the power ratio between idler and signal at the waveguide output, is shown in Fig. 1(a) as a function of the pump power. A clear quadratic increase can be seen with no signs of saturation due to nonlinear loss. Fig. 1(b) shows the conversion bandwidth measured by sweeping the signal wavelength while keeping the...
pre-amplified coherent receiver (33-GHz analog bandwidth) is used for reception. Offline processing follows, including low-pass filtering, frequency offset estimation, pilot-assisted constant modulus algorithm (CMA) equalization and carrier phase recovery using a trellis-based method12, demapping and FEC decoding. The equalizer taps trained on the pilots are linearly interpolated and applied to the entire received sequence.

Characterization of the wavelength converter

The impact of phase noise transfer from the pump for different laser linewidth and the achievable idler OSNR are first characterized. Fig. 3(a) shows the pre- and post-FEC bit error rate (BER) for the wavelength converted idler (signal wavelength at 1545 nm) as a function of the OSNR (0.1-nm bandwidth) for different linewidths of the pump laser, and thus different amounts of pump phase noise transferred to the idler during the FWM process. For this investigation, three pump lasers have been considered: a distributed feedback (DFB) laser with an estimated linewidth of 1 MHz, an ECL with a linewidth of 100 kHz and a fiber laser with sub-kHz linewidth (Koheras Basik X-15).

While a significant difference in the pre-FEC performance is shown between DFB and ECL, only a minor improvement is obtained by replacing the ECL with the fiber laser. However, due to the sharp slope of the post-FEC BER, this minor difference increases significantly the idler quality after decoding (=1 dB). For a given pump power, and thus CE, the idler
OSNR scales linearly with the input signal power (Fig. 3(b)). The increase in OSNR results in an improved pre-FEC BER only up to an input signal power of 9 dBm. Due to the strong nonlinearity in the waveguide, as the signal power is increased further, the idler is distorted by self-phase modulation (SPM). This yields an optimum achieved idler OSNR of 31 dB. In the following study, the signal power is set to 9 dBm and the fiber laser is used as pump.

C-band wavelength conversion

Fig. 4: (a) OSNR penalty as a function of the signal wavelength for a post-FEC BER of 2×10^{-2}; (b) and (c) optical spectra at the waveguide output for signals on the short (b) and long (c) wavelength side of the pump. Idler OSNRs above 30 dB are shown for all the cases.

OSNR > 30 dB provided by the wavelength converter, as shown in Fig. 4(b)-(c). The idler OSNR is thus more than sufficient for subsequent transmission.

Conclusions

An all-optical wavelength converter based on a 9-mm long AlGaAsOI nano-waveguide was experimentally demonstrated for 10-GBd 256-QAM signals with 33% FEC overhead. The wavelength conversion penalty has been minimized by studying the impact of pump laser linewidth in terms of phase noise transferred to the idler and the trade-off between OSNR degradation and SPM induced nonlinear distortion. Low OSNR penalty (<2.5 dB) has been shown spanning a 28-nm bandwidth with sufficient idler OSNR (> 30 dB) to potentially enable further transmission.

Acknowledgements

This work was supported by the DNRF research centre, SPOC, ref. DNRF123, the Villum Fonden center NATEC and the SiMOF project. NKT Photonics A/S is acknowledged for providing the narrow linewidth fiber laser.

References