Discovery of Selective Nanobodies against -elapitoxin Dpp2c from Black Mamba through Phage Display Screening

Milbo, Christina; Laustsen, Andreas Hougaard; Lohse, Brian

Publication date: 2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Discovery of Selective Nanobodies against α-elapitoxin Dpp2c from Black Mamba through Phage Display Screening

Christina Milbo¹, Andreas Hougaard Laustsen², and Brian Lohse²

¹Department of Systems Biology, Technical University of Denmark, ²Department of Drug Design and Pharmacology, University of Copenhagen

Targeting black mamba α-neurotoxins with nanobodies

Feared for its highly neurotoxic venom and rapid attack technique, the Black mamba (Dendroaspis polylepis) is Africa’s largest venomous snake [1]. The clinical manifestations of a bite from D. polylepis include flaccid paralysis leading to respiratory failure and death due to post-synaptic blockade of the neuromuscular junctions caused by α-neurotoxins [1-4]. Since antivenoms suffer from a reactivity bias towards larger toxins due to the fact that antivenoms are produced by immunization of large mammals, current antivenoms could be reinforced by addition of monoclonal antitoxins directed towards the smaller α-neurotoxins [1-5]. Here, we report the discovery of selective nanobodies targeting α-elapitoxin Dpp2c from D. polylepis through phage display screening [6].

Results – two selective nanobody binders discovered

A M13 phage library displaying nanobody genes from a llama immunized with venom from the monocled cobra (Naja kaouthia) [7,8] was selected against a venom fraction from D. polylepis venom containing high amounts of α-elapitoxin Dpp2c. Two monoclonal phages that bound strongly to this fraction were isolated. Monoclonal phage DNA will soon be sequenced, which will unveil the primary structure of the nanobodies displayed on the phages.

![Figure 1: Dendroaspis polylepis (Black mamba) eating prey. Photo: Ted Amsenmeier 2007](image1)

![Figure 2: ELISA results. The polyclonal phage library from the third round of pharing yields a strong ELISA signal, indicating the presence of strong peptide binders to α-elapitoxin Dpp2c](image2)

![Figure 3: ELISA results for 10 selected phage monoclones against α-elapitoxin Dpp2c.](image3)

![Figure 4: ELISA-based cross-reactivity study of the nanobody-displaying isolated phages. Dppc2: α-elapitoxin Dpp2c, SN-I: Short neurotoxin I, α-Cbt: α-cobratoxin.](image4)

Outlook – Reinforcing antivenoms with nanobodies

The isolated monoclonal nanobody displaying phages showed great selectivity towards α-elapitoxin Dpp2c and could potentially be added to existing antivenoms to reinforce their response towards this lethal α-neurotoxin. Once the sequences of the displayed nanobodies is known, the next steps include biosynthesis, determination of binding constants for the nanobodies, and measurement of their ability to inhibit α-elapitoxin Dpp2c in vitro and in vivo.

![Figure 5: Cartoon model of α-elapitoxin Dpp2c compared with overlaid cartoon models of α-elapitoxin Dpp2c and α-cobratoxin from Naja kaouthia (α-Cbt, cyan), drawn in PyMOL. Sequence alignment short neurotoxin I (SNT-I), α-elapitoxin Dpp2c (Dpp2c), and muscarinic toxin-α (MT-α), which are all α-neurotoxins from D. polylepis.](image5)

References


Contact information

cmilbo@bio.dtu.dk / +45 2216 2907

Acknowledgement

Collaborators: Mikael Flegmark, Federico De Masi

Financial support: Department of Drug Design and Pharmacology, University of Copenhagen