Development of a Recombinant Antibody-Based Treatment of Snakebites

Engmark, Mikael; Laustsen, Andreas Hougaard; Andersen, Mikael Rørdam; Jacobsen, Susanne; De Masi, Federico; Lund, Ole

Publication date:
2014

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Development of a Recombinant Antibody-Based Treatment of Snakebites

Mikael Engmark¹, Andreas Laustsen², Mikael Rørdam Andersen¹, Susanne Jacobsen¹, Federico De Masi¹, and Ole Lund¹

¹Department of Systems Biology, Technical University of Denmark, ²Department of Drug Design and Pharmacology, University of Copenhagen

Improving Antivenom to Save Lives and Limbs

Antivenom for snakebites is produced by immunization of large mammals with snake venom using a traditional and expensive method developed in the 1880’s. Due to the animal origin, the products are highly immunogenic and come with a high risk of adverse side effects such as serum sickness and anaphylaxis, possibly leading to death [1].

This project aims at replacing existing snake antivenoms with a mixture of recombinant, humanized antibodies produced by modern cell-based fermentation technology [2]. It is anticipated that such an antivenom will reduce the current high risk of severe side effects, reduce cost, and thereby can be sold at 1/10 of the current price making the essential medicine available for > 700 M Africans [4].

Modern day technology allows development of monoclonal antibodies (mAbs) targeting snake toxins, however, identification, characterization of immunogenic features (B-cell epitopes), and availability of purified snake toxins or non-toxic analogs currently constitute major bottlenecks blocking the development of recombinant mAbs. We have set out to remove these bottlenecks starting by mapping antibody binding sites of existing horse-derived products and purified antibodies from snakebite victims using high-density peptide microarrays. Moreover, we are developing homology models of all relevant mamba toxins to map conserved sites and identify key residues for toxicity.

Challenges in the near future

Modeling Short Neurotoxin 1 from Mamba Snakes

Figure 2 – Schematic overview of research approach.

Figure 4 – Identification of residues important for toxicity using homology modeling. Left: Key interactions between nAChR and finger 2 of the co-crystallized α-bungarotoxin (orange). R36 highlighted yellow. Right: Homology model of mamba SN1 aligned to nAChR. SN1 is a member of the large and diverse family of three-fingered toxins (3FTx). SN1 is known to antagonize the neuromuscular nicotinic acetylcholine receptor (nAChR) using finger 1 and 2 for binding [5]. Templates for homology model: JERA (crystal structure of mutant related Kraitotoxin a from a sea snake with low affinity for nAChR [7] and 2QG1 (nAChR bound distantly related α-bungarotoxin from the many-banded krait) [8].

Figure 5 – Schematic overview of upcoming challenges related to protein research.

References