Generator bearing defect development based on discrete fault stages

Skrimpas, Georgios Alexandros; Dragiev, Ivaylo G.; Nezeritis, Nikolaos; Marhadi, Kun Saptoharyadi; Holbøll, Joachim

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Generator bearing defect development based on discrete fault stages

Alexandros Skrimpas
alexandros.skrimpas@bkvibro.com
Ivaylo Dragiev
ivaylo.dragiev@bkvibro.com
Nikolaos Nezeritis
s152297@student.dtu.dk
Kun Marhadi
kun.marhadi@bkvibro.com
Joachim Holboell
jh@elektro.dtu.dk

Introduction
CMS is employed by OEM and O&O as part of the condition based maintenance strategy, both in onshore and offshore wind farms. The main objectives are:
1. Reduce cost of energy (CoE)
2. Increase energy and time availability
3. Optimize maintenance and component replacement

Commonly, vibration-based CMS is applied on monitoring of the main drive-train components and tower oscillations.

Generator bearing monitoring
Monitoring of generator bearings is performed by radially installed accelerometers close to the load zone. A wide variety of faults is detectable, such as
✓ subcomponents defects (ball, cage, inner & outer race)
✓ rotor dynamic faults (imbalance, misalignment, looseness)
✓ slip ring unit malfunction in DFIGs

Development of bearing faults
Data set consists of:
• 119 bearing defects (mainly BPFI), which have lead to
• 340 alarm reports of various severity.

The main observations are:
• Sev4 → Sev3: 80% of faults are upgraded within 10 months - 60% within 4 months
• Sev3 → Sev2: 80% of faults are upgraded within 4 months - 60% within 2 months
• Sev2 → Sev1: 85% of faults are upgraded within 2 months

Commonly, vibration-based CMS is applied on monitoring of the main drive-train components and tower oscillations.

Severity estimation
B&K Vibro CMS combines an automated alarm generation system with operator interaction in alerting, diagnosing and evaluating the severity of a developing fault. Four discrete severity levels are employed, providing suggestions on the criticality of a fault and lead time to inspection and planning of any required maintenance needs.

Conclusions
• Fault progression is faster as higher severity levels are reached
• Upgrade time is consistent with provided lead time