Generator bearing defect development based on discrete fault stages

Skrimpas, Georgios Alexandros; Dragiev, Ivaylo G.; Nezeritis, Nikolaos; Marhadi, Kun Saptoharyadi; Holbøll, Joachim

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Generator bearing defect development based on discrete fault stages

Alexandros Skrimpas
alexandros.skrimpas@bkvibro.com

Ivaylo Dragiev
ivaylo.dragiev@bkvibro.com

Nikolaos Nezeritis
s152297@student.dtu.dk

Kun Marhadi
kun.marhadi@bkvibro.com

Joachim Holboell
jh@elektro.dtu.dk

Introduction

CMS is employed by OEM and O&O as part of the condition based maintenance strategy, both in onshore and offshore wind farms. The main objectives are:

1. Reduce cost of energy (CoE)
2. Increase energy and time availability
3. Optimize maintenance and component replacement

Commonly, vibration-based CMS is applied on monitoring of the main drive-train components and tower oscillations.

Generator bearing monitoring

Monitoring of generator bearings is performed by radially installed accelerometers close to the load zone. A wide variety of faults is detectable, such as:

- Subcomponents defects (ball, cage, inner & outer race)
- Rotor dynamic faults (imbalance, misalignment, looseness)
- Slip ring unit malfunction in DFIGs

Development of bearing faults

Data set consists of:

- 119 bearing defects (mainly BPFI), which have lead to
- 340 alarm reports of various severity.

The main observations are:

- Sev4 → Sev3: 80% of faults are upgraded within 10 months - 60% within 4 months
- Sev3 → Sev2: 80% of faults are upgraded within 4 months - 60% within 2 months
- Sev2 → Sev1: 85% of faults are upgraded within 2 months

Severity estimation

B&K Vibro CMS combines an automated alarm generation system with operator interaction in alerting, diagnosing and evaluating the severity of a developing fault. Four discrete severity levels are employed, providing suggestions on the criticality of a fault and lead time to inspection and planning of any required maintenance needs.

Conclusions

- Fault progression is faster as higher severity levels are reached
- Upgrade time is consistent with provided lead time