Surface Enhanced Raman Spectroscopy detection of \textit{p}-coumaric acid from cell supernatant using gold-capped silicon nanopillar substrates

Morelli, Lidia; Jendresen, Christian Bille; Burger, Robert; Rindzevicius, Tomas; Nielsen, Alex Toftgaard; Boisen, Anja

\textit{Publication date:}
2016

\textit{Document Version}
Publisher's PDF, also known as Version of record

\textit{Link back to DTU Orbit}

\textit{Citation (APA):}

\textit{General rights}
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

\begin{itemize}
 \item Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 \item You may not further distribute the material or use it for any profit-making activity or commercial gain
 \item You may freely distribute the URL identifying the publication in the public portal
\end{itemize}

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
The purpose of the project is to use Surface Enhanced Raman Spectroscopy (SERS) to discriminate between two different bacterial populations, based on their p-coumaric acid (pHCA) production. The pHCA concentration is measured in a droplet of diluted supernatant dried on SERS substrates, using a Raman microscope. By analyzing the SERS signal of pHCA from the supernatant, considering the peak height at the characteristic frequency (1169 cm\(^{-1}\)) it is possible to distinguish between a producing and control strain, as also confirmed by HPLC analysis.

Aim of the Project

SERS: fabrication and working principle

![Image showing SERS fabrication and working principle](image)

Bacterial cultures and measurements

![Image showing bacterial cultures and measurements](image)

Salt dilution

![Image showing salt dilution](image)

Validation with HPLC

![Image showing HPLC analysis](image)

Outlook and conclusions

In this work we demonstrated that SERS is a rapid and effective tool for qualitative screening of bacterial strains, based on the amount of synthesized secondary metabolites (e.g. pHCA). These results open up new possibilities for high-throughput quantitative analysis. Currently we are focusing on improving sensitivity by extracting pHCA in organic solvent and on integration of the assays on automated and high-throughput microfluidic platforms, such as lab-on-a-disc.

References
