Development of an LC-ICP-MS method for zinc speciation in fish feeds

Silva, Marta; Sloth, Jens Jørgen; Waagbø, Rune; Ørnsrud, Robin; Amlund, Heidi

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
DEVELOPMENT OF AN LC-ICP-MS METHOD FOR
ZINC SPECIATION IN FISH FEEDS

Marta Silva1,2 Jens J. Sloth1,3 Rune Waagbo1,2 Robin Ørnsrud1 and Heidi Amlund1
1 National Institute of Nutrition and Seafood Research, P.O. Box 2029, 5817 Bergen, Norway
2 Institute of Biology, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway
3 National Food Institute - Technical University of Denmark, Mørkhøj Bygade 19, 2860 Søborg, Denmark
E-mail: msi@nifes.no

INTRODUCTION

- In analytical chemistry, speciation is considering individually the different chemical species of an element. Information regarding speciation is very important since the biological role of any particular element greatly depends on its chemical form.
- Nowadays, fish feeds are largely plant-based. Among the microminerals essential to fish, zinc is one of the most limited in plant-based diets. In order to meet fish requirement, there is a need to supply zinc in feeds.
- One of the objectives of the project is to study zinc requirement in Atlantic salmon. For that reason, speciation methods using LC-ICP-MS will be developed, aiming to quantify and identify the different zinc chemical forms present in feed ingredients, feeds and salmon tissues.

OUTLINE

- A variety of Zn-feed additives are approved by EU1), to be used in fish feeds, for instance:
  - Zinc acetate
  - Zinc oxide
  - Zinc sulphate
  - Zinc chelate of glycine
  - Zinc chelate of methionine

PRELIMINARY RESULTS

1 Solubility Tests

Feed samples were mixed with 10 mL of each solution (20 mM of NH₄OAc, pH 7.3; 50 mM Tris buffer, pH 7.5; H₂O) for 1h, using a rotator (30 rpm). Recovery was determined comparing Zn in extract with total Zn feed.

2 Extraction Methods

Acidic Extraction: Feed samples were mixed with 5 mL of 0.1 M HNO₃ for 1h, using a water bath, at 90°C.

Alkaline Extraction: Feed samples were mixed with 5 mL of 0.1M NaOH for 20h, using an elliptic table.

3 Speciation

SAX: PRP-X100, Hamilton

Chromatographic conditions:
50 mM (NH₄)₂CO₃ + 3% MeOH (pH 7), isocratic gradient
- All compounds are retained (≥9 min.), showing similar chromatographic profiles.

SCX: Ionosphere SC, Agilent

Chromatographic conditions:
(A) 0.5 mM Pyr + 3% MeOH (pH 3)
(B) 10 mM Pyr + 3% MeOH (pH 3)
0-15 min., 50% A + 50% B
15-30 min., 100% B
30-35 min., 50% A + 50% B
- Compounds are not retained

CONCLUSIONS & NEXT STEPS

1 Based on solubility tests, it was seen that slightly better recovery is obtained when using Tris buffer (pH 7.5).
- Lower Zn recovery may be related to Zn complexing with chemical structures that are not soluble.
- Next experiments will be done using longer time of extraction and protease and phytase will be added to study if Zn is binding to phytic acid and peptides.

2 Acidic extraction gave almost quantitative recovery in the feeds analysed (mean recoveries in the range of 81-96%).
- Alkaline extraction gave recoveries in the range of 134-140%. The high recoveries may be related to matrix effects during analysis. The analysis will be repeated with standard addition calibration to correct for these effects.

3 Based on the preliminary results, further experiments will be performed using anion-exchange chromatography (PRP-X100).
- Different chromatographic conditions will be tested and Zn organic bound compounds will be evaluated.
- Possible difficulties with stability of Zn compounds in solution it is an issue to keep in mind.
- SEC-ICP-MS will be tested with Zn organic compounds including feed additives and natural occurring compounds.

REFERENCES

This work is part of the project “Apparent availability and requirements of microminerals in salmon”, which is funded by the Research Council of Norway (grant no. 244490).

ACKNOWLEDGEMENTS