Synthesis of -1,4-Linked Galactan Side-Chains of Rhamnogalacturonan I

Andersen, Mathias Christian Franch; Kracun, Stjepan; Rydahl, Maja; Willats, William; Clausen, Mads Hartvig

Published in:
Chemistry: A European Journal

Link to article, DOI:
10.1002/chem.201602197

Publication date:
2016

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Synthesis of β-1,4-linked galactan side chains of rhamnogalacturonan I


Abstract: The synthesis of linear- and (1→6)-branched β-(1→4)-d-galactans, side chains of the pectic polysaccharide rhamnogalacturonan I is described. The strategy relies on iterative couplings of n-pentenyl disaccharides followed by a late stage glycosylation of a common hexasaccharide core. Reaction with a covalent linker and immobilization on NHS-modified glass surfaces allows for the generation of carbohydrate microarrays. The glycan arrays enables the study of protein-carbohydrate interactions in a high-throughput fashion, here demonstrated with binding to mAbs and CBMs.

The plant cell walls represent almost 50% of the biomass found in plants and are therefore one of the main targets for biotechnological research.[1,2] Major motivators are their potential as a renewable energy source for transport fuels, as functional foods, and as a source of raw materials to generate chemical building blocks for industrial processes.[1,3] Pectin is a class of highly complex polysaccharides found in the primary cell wall. The pectic matrix resists compressive forces, determines the firmness of fruits, and as a source of raw materials to generate chemical building blocks for industrial processes. Highly complex polysaccharides found in the primary cell wall. The pectic matrix resists compressive forces, determines the firmness of fruits, and as a source of raw materials to generate chemical building blocks for industrial processes. Pectin is a class of highly complex polysaccharides found in the primary cell wall. The pectic matrix resists compressive forces, determines the firmness of fruits, and as a source of raw materials to generate chemical building blocks for industrial processes.

The chemical synthesis of β-(1→4)-d-galactans is challenging due to the low reactivity of the axial disposed C4-OH of galactosyl acceptors. Not only are axial hydroxyls less accessible to glycosylation compared to primary and equatorial alcohols, but the acceptor must also typically be protected on the C3-O and C6-O, thereby making the C4-OH even more sterically hindered. Thus, only three groups have reported syntheses of β-(1→4)-d-galactoooligosaccharides and two of them only reached the trisaccharide level.[11-13] Our synthesis was based on a convergent strategy where a linear hexasaccharide with only one free hydroxyl was glycosylated with various glycosyl donors (Scheme 1). The linear hexasaccharide was prepared by consecutive glycosylations with an n-pentenyl disaccharide donor and the branching point was introduced via a NAP protected monosaccharide. The use of a disaccharide donor reduced the number of glycosylations and thereby improved the overall yield and reduced the number of steps.

Figure 1. Schematic representation of the structure of RG-1

Scheme 1. Synthetic strategy.
We have chosen to target reducing oligosaccharides and not install a synthetic linker at the reducing end of the target molecules. As the target molecules are fragments of larger polymers found in plant cell walls, they can serve as analytical standards for the oligosaccharides one obtains upon partial (chemo)enzymatic degradation of the polysaccharides. Furthermore, we have extensive experience with the covalent modification of reducing sugars in order to conjugate them to e.g. proteins and surfaces, techniques that we also take advantage of in this work (vide infra).

When we started investigating the reactivity of galactose acceptors, it was found to be crucial to protect the 3- and 6-position with benzyl groups in order to facilitate glycosylations of the 4-position. The use of acyl protecting groups gave rise to low yield in glycosylations after the disaccharide stage. The 2-position was protected by a pivalyl group to promote β-selectivity. Acetyl and benzoyl groups resulted in inferior α/β-selectivity and formation of orthoesters. An n-pentenyl glycoside was chosen as disaccharide donor since glycosylation of thioglycoside acceptors with glycosyl imidates gave rise to transglycosylation of the thiophenyl moiety and thereby degradation of the acceptors through aglycon transfer.

The synthesis of the disaccharide donor and the monosaccharide for branching is shown in Scheme 2. Regioselective benzylolation of thioglycoside diol followed by acylation of the C2-OH gave thioglycoside. Regioselective reductive opening of the benzylidene acetal with and treatment of the free C4-OH of with ClAcO, EtN, and DMAP provided the fully protected thioglycoside. Finally, hydrolysis with NBS/H2O followed by treatment with N-phenyl-trifluoroacetimidoyl chloride (PTFAICl) and Cs2CO3 gave the PTFAI donor in 40% total yield over six steps. Careful control of the temperature was necessary, since formation of the α-anomer was observed at higher temperatures (10°C). All of the reactions were easily scalable and it was possible to prepare disaccharide on a 30 g scale.

Disaccharide donor was first applied in the synthesis of a linear β-(1→4)-d-galactopentasaccharide and heptasaccharide (see Scheme 3). NIS/TESOTI-promoted coupling of acceptor and disaccharide donor afforded trisaccharide. This was converted to acceptor by selective deprotection of the chloroacetyl group with 0.02 M NaOMe in MeOH at 0°C. The trisaccharide acceptor was glycosylated with the disaccharide donor to give pentasaccharide in 83% yield. Deprotection with NaOMe/MeOH followed by coupling with donor gave the fully protected heptasaccharide. The reaction was slower than the two previous glycosylations (3 h vs. 1 h) but resulted in a similar yield.

Global deprotection of the pentasaccharide and heptasaccharide was achieved by treatment with Et3SiH in refluxing THF followed by hydrogenolysis over Pd(OH)2/C to afford the fully unprotected oligosaccharides and 72% and 78% yield, respectively (see Scheme 4).

The branched oligosaccharides were prepared using the same disaccharide donor but in this case a branching point was installed at the 4th sugar by coupling of trisaccharide acceptor.
with thioglycoside 17 (see Scheme 2) to give tetrasaccharide 27 in 76% yield (see Scheme 5). Deprotection of the chloroacetyl group with NaOMe/MeOH gave the tetrasaccharide acceptor 28 in 94% yield. A second glycosylation with disaccharide donor 20 gave the fully protected hexasaccharide 29 in 84% yield. Deprotection of the NAP ether with DDQ in CH₂Cl₂/H₂O afforded the C6-OH 30 in 75% yield.

![Scheme 5](image)

The hexasaccharide acceptor was glycosylated with five different donors (see ESI for details of their synthesis): a \(\beta-(1\rightarrow4)\)-linked \(\alpha\)-galactan 20, \(\beta-(1\rightarrow6)\)-linked \(\alpha\)-galactan 31, \(\alpha-(1\rightarrow5)\)-linked \(L\)-diarabin 32, \(\beta\)-galactose 33, and \(L\)-arabinose 34 (see Scheme 6). The glycosylations with \(n\)-pentenyl and thioglycoside donors were promoted by NIS/TESOTI in a 1:1 MeCN/CH₂Cl₂ mixture, whereas the glycosyl imidates were activated with TMSOTI in CH₂Cl₂. All of the reactions were performed at \(-40^\circ C\) to enhance the stereoselectivity. All of oligosaccharides were isolated in over 70% yield.

![Scheme 6](image)

In order to demonstrate the usefulness of the synthetic galactans for probing carbohydrate-protein interactions, we used glycan array screening. Galactans 1-9 and selected commercial linear arabinans (DP 3, 5 and 8) used as controls (Megazyme, Bray, Ireland) were printed onto Slide H microarrays from Schott (Mainz, Germany). For immobilization, we used the hetero-bifunctional linker 2-(N-methyl-aminoxy)-1-ethanamine, which was synthesized and used to amino-functionalize the oligosaccharides according to a modified protocol from literature. The conjugated oligosaccharides were desalted and printed using an ArrayJet Sprint microarrayer (ArrayJet, Roslin, UK) according to conditions modified from previous reports. Screening was performed essentially as previously reported for two monoclonal antibodies (MAbs LM5 and LM6) followed by a rabbit anti-mouse fluorescent secondary antibody, or by probing with a carbohydrate-binding module (CBM61) followed by a fluorescent anti-His antibody. The binding data can be seen in the Supporting Information and is presented in Table 1.

mAbs and CBM recognizing structural elements found in cell wall polysaccharides are important tools for studying plant fibers in situ with immunofluorescence spectroscopy. This technique has been applied to determine changes in cell wall polysaccharide distributions during plant development, for example. The rat monoclonal antibody LM5 is known to bind...
β-1,4-linked galactans, and has been generated by immunization of rats with a β-1,4-Galβ₂-BSA neoglycoprotein. [24]

The data in Table 1 clearly shows that LM5 exclusively binds the linear galactans 1-3. Branching is not tolerated and the fact that a terminal arabinan (oligosaccharide 4) eliminates binding shows that the LM5 epitope most probably involves the reducing end galactose residue. LM6, another rat monoclonal raised by immunization with a BSA neoglycoconjugate and popular for immunofluorescent microscopy of plant tissue is selective for arabinoxylans and is included here as a control to rule out unspecific binding during the array screening. [25] It has been demonstrated that LM6 requires at least three consecutive arabinose residues for binding and as expected, no binding to any of the galactans 1–9 can be detected with LM6, whereas binding to the linear arabinoxylans is clearly detected.

Table 1. Microarray data for binding of LM5 antibody and CBM61 to the synthesised linear and branched galactans 1-9 as compared to controls (arabinans with DP3, DP5 and DP8 probed with LM6).

<table>
<thead>
<tr>
<th>Compound</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>Ara3</th>
<th>Ara5</th>
<th>Ara8</th>
</tr>
</thead>
<tbody>
<tr>
<td>LM5</td>
<td>87</td>
<td>64</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>LM6</td>
<td>0</td>
</tr>
<tr>
<td>CBM61</td>
<td>0</td>
</tr>
</tbody>
</table>

CBM61, a carbohydrate-binding module from a Thermotoga maritima endo-β-(1→4)-galactanase, has previously been shown to bind to an unusual epitope related to a helical conformation of β-(1→4)-D-galactan. [26] Our studies show that neither linear nor branched oligogalactans are recognized by CBM61 when conjugated and immobilized on a microarray surface. The lack of binding is likely a result of the helical conformation being lost by branching and/or surface presentation.

In conclusion, a convergent strategy for (1→6)-branched β-(1→4)-D-galactans was developed and a small library of hepta- and octasaccharides has been prepared. The late-stage introduction of branching significantly reduces the overall number of steps and makes it possible to use different donors. The substrates have been used for the preparation of oligosaccharide microarrays and in addition to the results presented here, the oligosaccharides are expected to give new insight regarding the structure and function of pectic polysaccharides in the future.

Acknowledgements

We acknowledge financial support from the Danish Council for Independent Research and the Danish Strategic Research Council (GlyAct and SET4Future projects), from the Villum Foundation (PLANET project) and the Novo Nordisk Foundation (Biotechnology-based Synthesis and Production Research).

Keywords: Carbohydrate • Plant Cell Wall • Glycosylation • Oligosaccharide • Rhamnogalacturonan

We report the chemical synthesis of nine linear and branched galactan oligosaccharides related to the plant cell wall polysaccharide pectin. The target molecules will allow the detailed study of carbohydrate-protein interactions, as exemplified for two mAbs and a CBM here.


Synthesis of β-1,4-linked galactan side chains of rhamnogalacturonan I