Life cycle assessment of stormwater management systems for Nørrebro, Copenhagen

Brudler, Sarah; Arnbjerg-Nielsen, Karsten; Hauschild, Michael Zwicky; Rygaard, Martin

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Life cycle assessment of stormwater management systems for Nørrebro, Copenhagen

S. Brudler*1,2, K. Arnbjerg-Nielsen1,2, M. Z. Hauschild3, M. Rygaard1,2
1. Urban Water Systems, Department of Environmental Engineering, Technical University of Denmark; 2. VCS Denmark, 3. Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark; * sabr@env.dtu.dk

Introduction
Climate change will lead to more and heavier rain events in Denmark. The existing sewer systems won’t be able to cope with the additional runoff and adaptation is necessary, if current flood safety levels are to be met in the future. Numerous elements have to be combined to retain, discharge and purify water. Different approaches to managing stormwater exist, and we are comparing two possible solutions in order to identify the environmentally beneficial alternative.

Stormwater management in Nørrebro, Copenhagen
Nørrebro is a 2.6km2 large catchment in inner Copenhagen. A Cloudburst Management Plan has been designed by the City of Copenhagen [1] to handle all additional rain expected due to climate change. Local retention and discharge above the surface are key elements. This solution is compared to a more traditional, subsurface alternative, only utilizing pipes and retention basins to handle runoff. The primary functions of both systems are the flood safety targets for different rain intensities.

Methods
The life cycle inventory is based on plans, expert interviews and databases. The processes are modelled in EASETECH [2] using the ecoinvent database [3]. The ILCD recommended method was chosen for the impact assessment [4]. The impacts were normalized with reference to the impact of an average person in Europe per year, using the factors developed in the PROSUITE project [5].

Results
Environmental impacts and life cycle stages
The environmental impacts of the Cloudburst Management Plan (3 – 18 PE/year) are significantly lower than the impacts of the subsurface alternative (14 – 103 PE/year). This is mainly due to the high material demands, which cause 63 – 96% of the total impacts of the subsurface alternative, and 42 – 75% of the Cloudburst Management Plan.

Conclusion
- The Cloudburst Management Plan has lower environmental impacts in all categories.
- Material production is the life cycle stage contributing most to the total impacts.
- Parameter and structural uncertainty influence the results significantly.
- When taking uncertainty into account, the Cloudburst Management Plan remains the environmentally preferable solution.

Acknowledgements
The Ministry of Science, Technology and Innovation in Denmark and VCS Denmark, HOFOR and Aarhus Vand Assesment, Department of Management Engineering, Technical University of Denmark; sabr@env.dtu.dk

References