Spectro-temporal modulation sensitivity and discrimination in normal hearing and hearing-impaired listeners

Sanchez Lopez, Raul; Fereczkowski, Michal; Santurette, Sébastien; Dau, Torsten

Publication date: 2016

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Spectro-temporal modulation sensitivity and discrimination in normal hearing and hearing-impaired listeners

Raul H. Sanchez1, Michal Ferčekowksi2, Sébastien Santurette1,2 and Torsten Dau1
rsalo@elektro.dtu.dk

1Hearing Systems group, Department of Electrical Engineering, Technical University of Denmark, DK-2800, Kgs. Lyngby, Denmark
2Department of Head and Neck Surgery and Audiology, Rigshospitalet, Copenhagen, Denmark

Introduction

When a signal varies in its properties along the time and frequency, this is considered a modulation. Speech signals exhibit temporal and spectral modulations. The sensitivity to these modulations has been studied in normal-hearing (NH) listeners, yielding temporal, spectral and spectro-temporal modulation transfer functions (Dau et al. 1997, Edin & Bero 2007, Chi et al. 1999). Recently, Mehraei et al. (2014) showed significant differences between normal-hearing and hearing-impaired (HI) listeners in spectro-temporal modulation detection and also the relation between STM sensitivity to speech intelligibility in noise. Moreover, Henry et al. (2005) showed large differences in STM discrimination tasks. The present study attempted to establish the limits of STM perception in NH listeners and two groups of HI (with either good or poor speech intelligibility).

Motivation

The reduced STM sensitivity in HI listeners has been ascribed to temporal fine structure processing deficits and a loss of frequency selectivity (Bernstein et al. 2013, Mehraei et al. 2014). The main assumption of this study is that the individual differences in STM sensitivity can be related to the existence of supra-threshold distortions (Plomp, 1986).

Research Questions

Q1: Where are the limits of STM perception in NH listeners for narrow-band noise carriers?

Q2: Can supra-threshold distortions be characterized by STM detection thresholds?

Experiment I: Limitations in STM sensitivity and discrimination in NH listeners

Method

Subjects: 15 Young NH listeners

Procedure: 3AFC, 1 up 2 down

Stimuli: Level: 35 dB SL
Modulated 1 octave bands
• f1 = f0
• f2 = 2 f0
f1 = 1 kHz
f2 = 2 kHz

STM detection:
• 2 conditions: 1 kHz, f2 = 4 kHz
• 4 kHz, f2 = 4 kHz

Level: S/N = 30 dB

STM profile:
• 3 IFC, 1 up 3 down procedure

TM detection:
• Same frequencies (1 and 4 kHz) and f1 (4 kHz)

Results

Fig. 2: A) Detection thresholds for temporal (TMD), spectral (SMD) and spectro-temporal modulations (STMD).
• The TMD thresholds were lower (better) than only TMD.
• The SMD thresholds were lower (better) than only SMD.
• The STMD thresholds were lower (better) than only STM.

B) Spectro-temporal ripple discrimination (STRD) and Spectral (SRD) ripple discrimination for 1 octave band modulated noises.
• There was no significant difference for the frequency conditions.
• STRD threshold was lower and was found less suitable for a clinical set-up.

Experiment II: Spectro-temporal modulation sensitivity and hearing deficits

Method

Subjects: 23 subjects were divided in three groups by means of the SISI questionnaire for Speech:
5 NH, 9 HI1, 9 HI2

STM detection:
• 2 conditions: 1 kHz, f2 = 4 kHz
• 4 kHz, f2 = 4 kHz
• Level: S/N = 30 dB

STM profile:
• 3 IFC, 1 up 3 down procedure

TM detection:
• Same frequencies (1 and 4 kHz) and f1 (4 kHz)

Results

Fig. 3: STM sensitivity individual results (ears) for the NH, HI1 and HI2 groups. Results at 0 dB show the subjects which were not able to perform the test.
• In condition at 4 kHz, HI1 presented reduced STM thresholds.
• HI2 showed a difference with NH of 9 dB and HI1 of 12.
• There was a significant difference between the two HI groups (p < 0.05) at 4 kHz but not at 1 kHz.
• Some of the subjects were not able to detect the STM in both conditions.

Fig. 4: STM and TM detection thresholds for 2 subjects with profile A (HI1 and HI2) and two with profile B (HI1 and HI2). The symbol (*) represents a threshold that was not measured. Profile A showed a difference between TM-STM thresholds of 9 dB. Profile B showed either an increased TM-STM (HI1) or reduced (HI2) 0 dB.

Conclusion and Outlook

In the present study the HI listeners were divided in two groups by means of the SISI questionnaire. Significant differences were observed between the two groups in STM. Overall, these results suggest that the two groups may be affected by different impairments. Within the Better hEAring Rehabilitation (BEAR) project, a new battery test will provide information about the hearing deficits beyond the audiogram. The results from the present study suggests that spectro-temporal modulation detection might be a good candidate for characterizing hearing deficits towards a clinical profiling.

• NH listeners were more sensitive to STM than to purely temporal modulations.
• Some HI listeners were not able to perform the STM task, especially in HI1 (with poorer self-reported speech understanding).
• STM or the threshold difference between TMD and STM could be part of a clinical test for hearing profiling.

References


Fig. 1: A) Detection performance at band modulation levels (4 kHz, f2 = 2 kHz) and 4 kHz. B) Spectral ripples are induced by band-modulated stimuli. C) Detection performance at band modulation levels (4 kHz, f2 = 2 kHz) and 4 kHz.