Effects of Exposure to Carbon Dioxide and Human Bioeffluents on Cognitive Performance

Zhang, Xiaojing; Wargocki, Pawel; Lian, Zhiwei

Published in:
The 9th International Symposium on Heating, Ventilation and Air Conditioning (ISHVAC) joint with the 3rd International Conference on Building Energy and Environment (COBEE), 12-15 July 2015, Tianjin, China

Link to article, DOI:
10.1016/j.proeng.2015.08.1040

Publication date:
2015

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Abstract

The purpose of this study was to examine whether exposures to CO2 in the range of 500 ppm to 3,000 ppm with and without bioeffluents influence cognitive performance. Twenty-five subjects were exposed in the climate chamber for 255 minutes. Cognitive performance was examined by multiple tasks including proof-reading, addition, subtraction, text typing, neurobehavioral tests, Tsai-Partington task, and d2 attention task. Subjective ratings of comfort and experienced acute health symptoms were collected, physiological responses of subjects were monitored and the saliva samples were collected to analyze stress biomarkers. The results show that during exposure to bioeffluents with CO2 reaching 3,000 ppm speed of addition was significantly reduced, subjects responded significantly quicker in redirection task and completed significantly less correct links in Tsai-partington test, which may imply that arousal (stress level) was an underlying mechanism.

Keywords: Carbon dioxide; Human bioeffluents; Cognitive performance

1. Introduction

Recent studies suggest that exposure to pure carbon dioxide (CO2) (without bioeffluents) at concentrations of 2,500 ppm to 4,000 ppm can have respectively negative effects on decision making performance[1] and the performance of proof-reading[2]. If confirmed by other experimenters, these results suggest that the strategy for designing ventilation rates in densely populated spaces, where these CO2 levels are likely, may have to be revised.
The purpose of this study was to examine the potential effects of low to moderate CO2 levels on human performance and extend the scope of previous work by examining the effects during exposures to CO2 with human bioeffluents. The results of subjective responses have been reported earlier by Zhang et al. [3]. The present paper focuses on the effects on cognitive performance.

2. Methods

The experiment was carried out in a 3.6 × 2.5 × 2.5 m stainless steel chamber (30 m³ volume with recirculation ducts) (Fig. 1), which was described in detail by Albrechtsen [4]. The construction minimizes the emissions and sorption of pollutants and ensures that the chamber volume is tightly sealed. The chamber has its own system for supplying and conditioning outdoor air, in which the ducting is also made of stainless steel. Immediately prior to the present experiments, the chamber and the plenum were thoroughly cleaned with 'neutral’ cleaning agents and ‘baked’ for one week at 40°C to reduce any potential residual pollution adsorbed on the surfaces in contact with chamber air. There were six workstations in the chamber for the subjects and the experimenter, each consisting of a table, a chair, a laptop PC and a desk lamp.

Fig. 1. Schematic figure of the chamber, where the experiments were carried out: ① supply fan, ② two stage filter G3/F7, ③ heating coil, ④ cooling coil, ⑤ dampers, ⑥ filter box for charcoal filters (empty), ⑦ filter box (empty), ⑧ recirculating fan, ⑨ electric heating coil, ⑩ exhaust fan, ⑪ HOBO logger (temperature & relative humidity sensor) with CO2 sensor, ⑫ desk lamp, ⑬ laptop, ⑭ temperature and humidity sensor of the chamber control system, ⑮ multi-gas analyzer, ⑯ flowmeters, ⑰ pressure regulator, ⑱ CO2 gas cylinders (30L), ⑲ sampling point.

In three of the five exposures examined in the present experiments the outdoor air supply rate was high enough to remove bioeffluents, creating a reference condition with CO2 at 500 ppm (referred to as B500), while chemically pure CO2 was added to the supply air to create exposure conditions of 1,000 ppm or 3,000 ppm (referred to as P1000 and P3000). In two other conditions, the outdoor air supply rate was restricted (reduced) to allow the bioeffluent CO2 level to reach 1,000 ppm or 3,000 ppm (referred to as M1000 and M3000), thereby ensuring that other
bioeffluents reached concentrations corresponding to those in the occupied rooms with CO₂ at these levels. Table 1 shows that the resulting levels of CO₂ in the chamber originated from 3 different sources: from the cylinders, from the outdoor air itself, and from the occupants, in descending order of magnitude. Temperature and noise level were kept constant during the exposures, however, due to the lack of a dehumidifier, the relative humidity (RH) increased by a few % at M3000.

Table 1. Planned conditions for different exposures

<table>
<thead>
<tr>
<th>Condition</th>
<th>Outdoor air supply rate to the chamber (m³/h) / (l/s per person)</th>
<th>CO₂ transported with outdoor air (l/min)</th>
<th>Pure CO₂ dosed from cylinders (l/min)</th>
<th>Metabolic CO₂ generated by people in the chamber (l/min)</th>
<th>CO₂ level in the chamber (outdoor level at 350 ppm)</th>
<th>Temperature (°C)</th>
<th>RH</th>
<th>Noise level (dB(A))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B500</td>
<td>720 / 33.3</td>
<td>4.2</td>
<td>-</td>
<td>1.9</td>
<td>500</td>
<td>500</td>
<td></td>
<td>24°C</td>
</tr>
<tr>
<td>P1000</td>
<td>720 / 33.3</td>
<td>4.2</td>
<td>6</td>
<td>1.9</td>
<td>1000</td>
<td>500</td>
<td></td>
<td>30%</td>
</tr>
<tr>
<td>P3000</td>
<td>720 / 33.3</td>
<td>4.2</td>
<td>30</td>
<td>1.9</td>
<td>3000</td>
<td>500</td>
<td></td>
<td>30%</td>
</tr>
<tr>
<td>M1000</td>
<td>155 / 7.2</td>
<td>0.9</td>
<td>-</td>
<td>1.9</td>
<td>3000</td>
<td>500</td>
<td></td>
<td>45 dB(A)</td>
</tr>
<tr>
<td>M3000</td>
<td>38 / 1.8</td>
<td>0.2</td>
<td>-</td>
<td>1.9</td>
<td>3000</td>
<td>500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Twenty-five subjects were exposed in climate chamber for 255 minutes in groups of five persons at a time in a Latin-square design. Cognitive performance was examined by the test battery (TB) including multiple tasks resembling office work (proof-reading test, addition, subtraction and text typing) as well as by neurobehavioral tests (redirection, grammatical reasoning, Stroop and Stroop with feedback), Tsai-Partington test and d2 attention test. In parallel the subjective ratings of comfort and acute health symptoms were collected, physiological responses (PM) were monitored and saliva samples were collected to analyze levels of stress biomarkers: α-amylase and cortisol. Fig. 2 shows in details the experimental procedure during each exposure.

![Fig. 2. Experimental procedure](image_url)

The effects of exposures on different outcomes were analysed using a mixed ANOVA model; the significance level was set to 0.1 for random effects and to 0.05 for fixed effects. Experimental conditions (c), time at which different assessments were made during the day (t), condition×time interaction (ct), order of exposure of conditions (o) and gender (g) were included as fixed factors. Subjects (S), groups (Gr), subject×condition interaction (SC) and subject×time interaction (ST) were included as random factors in the model. Since the levels of time do not reflect the actual time, but rather the order of the repeated measurements during a day, time is included as a fixed factor not as a covariate. With the design of experiments, a specific exposure condition was always following a specific other exposure condition except if the condition was given on Monday. This caused that subject×condition (SC) interaction was confounded with the subject×order of exposure (SO) interaction in the statistical model. These
Interactions will consequently be referred to as simply SC. In addition to mixed ANOVA model, Page trend test was used for these outcomes that changed monotonically with CO₂ levels with significance level set to 0.05.

3. Results and discussion

Among the many tests examining the cognitive performance of subjects there were only few for which the performance differed significantly between conditions. These were addition (P=0.023), redirection (P=0.015) and Tsai-Partington test (P<0.001).

Speed at which subjects added units was lower for different conditions compared with B500, the difference reaching statistical significance at M3000 (Fig. 3). Analysis of variance showed that % of errors committed was also different between different conditions (P=0.049) but it was not possible to determine, at which conditions the difference was statistically significant through post-hoc tests. Raw data showed highest % of errors at B500 and M3000.

Subjects responded significantly quicker in redirection test at M3000 compared with B500 (Fig. 3). No effects were observed on % errors.

The results of Tsai-Partington test showed the number of correct links made by the subjects was lower for different conditions compared with B500, the difference reaching statistical significance at M1000 (Fig. 3). The performance of Tsai-Partington test depends on the level of stress and is improved (more links are made) at lower stress and large attention field [5]. Thus this result suggests that the arousal of subjects was higher at elevated CO₂ levels. Poor performance on Tsai-Partington test at elevated CO₂ levels (especially with bioeffluents) may explain also why speed in addition was lower but response quicker in redirection. This is because the performance of
different tasks depends on arousal level and the nature of the task [6]: High arousal being likely to decrease the high mental performance like addition and to increase the performance of tasks requiring attention and quick response like redirection.

Analysis of variance showed also that the difference in performance of two tasks between conditions approached statistical significance. These were performance of proof-reading (P=0.062) and text-typing (P=0.053). Speed, at which proof-reading was performed, was varying across different conditions and was the lowest at M3000 while the highest at P3000; there were no effects on errors or false positives. Page test showed that speed increased systematically between B500, P1000 and P3000 (P<0.05). The systematic effect was also seen in reduction of speed between B500, M1000 and M3000 but this trend did not reach formal statistical significance. In text typing there were very small differences between number of characters typed by the subjects at different conditions and it was not possible to determine with the post hoc tests which conditions differed mostly. The error rates of text typing have not yet been analyzed.

4. Conclusions

Present results suggest that only exposures to bioeffluents when CO₂ reached 3,000 ppm significantly affected performance of some cognitive tasks. Increased arousal level at this exposure can be used to explain the observed results.

Acknowledgements

This work is supported by Bjarne Saxhof Foundation, and the 12th Five Plan National Science and Technology Support Project of China (No. 2012BAJ02B05).

References