Chemotaxonomy of the genus Stemphylium

Olsen, Kresten Jon Kromphardt; Andersen, Birgitte

Publication date:
2016

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Chemotaxonomy of the genus *Stemphylium*

Kresten Jon Kromphardt Olsen and Birgitte Andersen
Department of Biotechnology and Biomedicine Technical university of Denmark, Kgs. Lyngby, Denmark

Abstract

The filamentous fungal genus *Stemphylium* (Anamorphic *Pleospora*) is often found on various crops, and especially the common animal feed plant *Medicago sativa* (alfalfa) is often infected by this plant pathogen. With this in mind it is important to consider what consequences such a contamination can have, e.g. production of mycotoxins. (Firsvad et al. (2009))

A clade of *Stemphylium* spp. i.e. *S. herbarum*, *S. alfae*, *S. sedicola*, *S. tomatonis* and *S. vesicarium* are troublesome to distinguish as they share both morphological and molecular characteristics. This study has focused on using chemotaxonomy via HPLC-UV/VIS-MS analysis as a third method for identification and to investigate the chemical potential of the genus *Stemphylium*. A total of 253 unique compounds were used for chemotaxonomy and the majority of these were unknown compounds.

Morphological identification

The morphology of *Stemphylium* conidia. Some species require special knowledge of the morphology (I-VI) to identify, while others are easier to identify by this method (VII-IX).

Examples of compounds

The majority of known *Stemphylium* compounds are of polyketide origin.

Chemical identification

Chemotaxonomy gave some resolution of group C. Identification via phylogeny would give more resolution but a total of 8 chemical groups were identified. Some were of known isolates e.g. *S. gracilariar*, *S. majusculum* and *S. eturnium*. Interestingly *S. lycopersici* (group A) and *S. solanii* (group D) clustered within group C.

Group A, B, D, E, F

All species of this group are very easy to distinguish from group C. These also have solid separation and many unique compounds to differentiate them.

Group C

Chemotaxonomy gave some resolution of group C. Identification via phylogeny would give more resolution but a total of 8 chemical groups were identified. Some were of known isolates e.g. *S. gracilariar*, *S. majusculum* and *S. eturnium*. Interestingly *S. lycopersici* (group A) and *S. solanii* (group D) clustered within group C.

Conclusion and perspectives

Chemotaxonomy with the genus of *Stemphylium* gave a new tool for identification of the individual species. Also, a list of detected compounds within the genus has been made. With this list it is possible to mine for novel bioactivities as it is possible to analyze vastly different metabolic profiles within the same genus.

References