Engineering of actinomycetes using CRISPR/Cas9 technologies

Tilmann Weber¹, Yaojun Tong¹, Kai Blin¹, Sang Yup Lee¹²

¹ The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kogle Alle 6, 2970 Hørsholm, Denmark; ² Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Center for Systems and Synthetic Biotechnology, Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea

Actinomycetes historically have been – and still are – among the most important producers of Natural Products with anti-microbial activities and therefore are an excellent source for the discovery of novel bioactive molecules that could serve as leads for novel drugs to treat infectious and other diseases.

While this group of organisms was studied for many decades, genome analyses indicate that the genetic potential of these bacteria to synthesize secondary metabolites is far beyond the number of molecules observed in traditional chemical screenings. While advances in genome sequencing and genome mining software like antiSMASH (http://antismash.secondarymetabolites.org) [1-3] help scientists in identifying promising biosynthetic pathways, it still remains challenging to genetically engineer streptomycetes and apply systems metabolic engineering approaches to induce expression of these gene clusters or optimize the production in these strains [4].

Here, we present a CRISPR/Cas9-based toolkit for streptomycetes and other actinomycetes that allows (i) the generation of a library of mixed-size deletion mutants around a defined target site, (ii) the highly efficient generation of mutants in specific targeted genes, and (iii) the repression of transcription using a “dead-Cas9” variant of the CRISPR system [5].

In addition, we present CRISPy-web (http://crispy.secondarymetabolites.org), a publicly accessible web-service to design single guide-RNAs (sgRNAs) for a wide variety of CRISPR applications [6]. In contrast to most other guide-RNA design tools, CRISPy-web is not limited to pre-selected model organisms but can be used to identify suitable Cas9 target regions in any user-submitted microbial genome.

Keywords: Streptomyces, actinomycetes, CRISPR, metabolic engineering, sgRNA, bioinformatics

References:


Preferred presentation: ☐XXX Oral ☐Poster ☐Young Researchers Workshop
Presenter (title and name): Dr. Tilmann Weber