Age of Barrier Canyon-style rock art constrained by cross-cutting relations and luminescence dating techniques

Pederson, Joel L.; Chapot, Melissa S.; Simms, Steven R.; Sohbati, Reza; Rittenour, Tammy M.; Murray, Andrew Sean; Cox, Gary

Published in:
Proceedings of the National Academy of Sciences of the United States of America

Link to article, DOI:
10.1073/pnas.1405402111

Publication date:
2014

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
The age of Barrier Canyon-style rock art constrained by cross-cutting relations and new OSL dating techniques

Joel L. Pederson, Melissa S. Chapot, Steven R. Simms, Reza Sohbat, Tammy M. Rittenour, Andrew S. Murray, Gary Cox

*Department of Geology, Utah State University, Logan, Utah 84322 *Geography and Earth Sciences, Aberystwyth University, Aberystwyth, SY23 3DB, United Kingdom 1Department of Sociology, Social Work, and Anthropology, Utah State University, Logan, Utah 84322 *Nordic Lab. for Luminescence Dating, Dept. of Geosciences, Aarhus University, DK-4000 Roskilde, Denmark 1Center for Nuclear Technologies, Technical University of Denmark, DK-4000 Roskilde, Denmark 1Canyonlands National Park, Moab, Utah 84532

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Rock art compels interest from both researchers and a broader public, inspiring many hypotheses about its cultural origin and meaning, but it is notoriously difficult to date numerically. Barrier Canyon-style (BCS) pictographs of the Colorado Plateau are among the most debated examples; hypotheses about its age span the entire Holocene epoch and previous attempts at direct radiocarbon dating have failed. We provide multiple age constraints through the use of cross-cutting relations and new and broadly applicable approaches in optically stimulated luminescence dating at the Great Gallery panel, the type-section of BCS art in Canyonlands National Park, southeastern Utah. Alluvial chronostatigraphy constrains the burial and exhumation of the alcove containing the panel, and limits are also set by our related research dating both a rockfall that removed some figures and the rock's exposure-time before burial. Results provide a maximum possible age, a minimum age, and an exposure-time window for the creation of the Great Gallery panel, respectively. The only prior hypothesis not disproven is a late Archaic origin for BCS rock art, though our age result of ≃1-1000 AD coincides better with the transition to and rise of the subsequent Fremont culture. This chronology is for the type-locality only, and variability in the age of other sites is likely. Nevertheless, results suggest that BCS rock art represents an artistic tradition that spanned cultures and the transition from foraging to farming in the region.

INTRODUCTION

Archaeology is focused upon material records, contextualized in time. Rock art is a record with the potential to provide unique insight into the dynamics and evolution of culture, but it generally lacks stratigraphic or chronologic context. Interpretation of the origin and meaning of rock art is indirect at best, or simply speculative. In the case of some pictographs, pigments may include or have enough accessory carbon for AMS radiocarbon dating (1-4). In other special situations, such as caves, minimum age constraints have been obtained by various techniques of dating material that overlies or entombs rock art (5-7). Yet most rock art remains undatable and researchers rely upon stylistic comparison and indirect associations with artifacts at nearby sites (8,9). The case in point for this study is arguably the most compelling and debated rock art in the United States—the Barrier Canyon Style (BCS) of the Colorado Plateau. Previous attempts to derive an absolute chronology have failed and its age remains unknown, with widely ranging hypotheses that have remained untested until now.

The continued development of dating techniques offers new possibilities for hypothesis testing. The optically stimulated luminescence (OSL) signals from mineral grains make it possible to date the deposition of most sediment that is exposed to a few seconds of full sunlight before burial, and its use in the earth and cultural sciences has greatly increased (10,11). Amongst the latest applications of OSL are techniques dating the outer surfaces of rock clasts that have become shielded from light, including those with archaeological context (12-15). Recent work has furthermore utilized the “bleaching” profile of decreasing luminescence signal towards the surface of rock in order to estimate exposure time to sunlight (16,17). Using these dating tools, we can constrain the age of rock art and gain new insight into past cultures and landscapes.

Here we synthesize results from three novel approaches to dating the type section of BCS art, the Great Gallery in Canyonlands National Park of southeastern Utah. Through dating the full alluvial stratigraphy and a rockfall event that both have incontrovertible cross-cutting relations with the rock art, and then by determining the exposure-duration of a painted rock surface, we greatly narrow the window of time when the rock art was created. These approaches do not require direct sampling of rock art, and have strong potential for application to other archaeological and surface-processes research. While our results are only for the type-section of BCS art, and chronological variability should be expected for the style across the region, they suggest that BCS art coincides with the transition to agriculture in the northern Colorado Plateau and may not have been limited to a specific archaeological culture.

BACKGROUND

Barrier Canyon style (BCS) rock art was recorded in the central Colorado Plateau by the Clifton Emerson Expedition in the 1920s (18), and defined as a style by Schaafsma (ref. 19). This distinctive rock art stands out from its sandstone canvas in sharp, ruddy relief and is grouped in panels of life-sized, mummy-like figures of human and animals. Barrier Canyon style art represents an artistic tradition that spanned cultures and the transition from foraging to farming in the region.

Significance

Key physical relations between the famous Great Gallery rock art panel in Utah, stream deposits, and a rockfall that removed some art, allow us to disprove all but a late Archaic hypothesis for the age of this type-section of the Barrier Canyon style. Use of a new luminescence-profile technique on the same rockfall furthermore outlines a window of time ~1 to 1100 AD when the figures could have been painted, generally more recent than expected. Our study illustrates novel and widely applicable approaches for dating rock art that don't require destructive sampling, and results suggest that Barrier Canyon rock art persisted across the transition from the late Archaic into the agrarian Fremont culture in the American Southwest.
anthropomorphs, often accompanied by realistic representations of animals and organized in 3-dimensional displays. The figures were formed by a meticulous combination of rock pecking and application of multiple pigments (19,20). The Great Gallery was created after stream incision removed T2 alluvium, which contributes to the Early Archaic hypothesis being improbable. The cross-cutting rock fall dated to AD ~1100 rules out the post-Fremont hypothesis. Finally, the exposure-duration from OSL-profile analysis provides a more specific time window of AD ~1-1100 when the rock art could have been made.

although this is contested (22). Similarity to other neighboring, potentially contemporaneous, styles most notably includes the Esplanade style of Grand Canyon (ref. 23, included in BCS area of Fig. 1). In the San Juan River drainage to the southwest there are several Basketmaker II (early farmers 1500 BC – AD 400) styles known (20), including the San Juan Anthropomorphic style, which shows elements of similarity to BCS (21). Stylistic consistency perceived between BCS panels has raised the prospect that they were painted by a single person (19). On the other hand, as BCS rock art has been increasingly documented, variability in the style has increased, with Cole (ref. 24) identifying seven variants. Panels are often located in prominent view along the walls of major canyons and generally afforded exclusive locations where superposition by later styles was avoided. Yet, BCS art commonly shows modification and embellishment over time, and Cole (ref. 20) argues that this shows the panels were not “frozen in time”. Barrier Canyon style art may in fact span considerable time and cultures, but the ability to test such ideas hinges upon building directly-dated chronologies.

The age of BCS rock art has been estimated by indirect methods, including typological cross-dating, stylistic content, and by association with dated sites in the vicinity. These approaches are useful for framing models, but they cannot be empirically tested in the absence of numerical ages. In fact, there have been two prior attempts to directly date BCS art at the Great Gallery through AMS radiocarbon methods. Successful AMS dating of Fremont rock art in Canyonlands National Park (2) lead to attempts to date pigment from fallen talus blocks at the Great Gallery (25). Unfortunately, there is no organic binder in the pigment and contamination by ancient hydrocarbons and modern aqueous carbon from the sandstone bedrock produced variably old and young dates (26). A second attempt at direct radiocarbon
Table 1. Geochronology summary

<table>
<thead>
<tr>
<th>OSL sample</th>
<th>Unit/Location-position</th>
<th>Dose rate (Gy/ky)</th>
<th>De (Gy)</th>
<th>Age model</th>
<th>Age (ka)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>USU-186</td>
<td>T1 Alcove upper</td>
<td>1.89 ± 0.06</td>
<td>0.10</td>
<td>1.45 ± 0.8</td>
<td>0.80 MAM</td>
</tr>
<tr>
<td>USU-276</td>
<td>T1 Alcove middle</td>
<td>2.00 ± 0.06</td>
<td>0.11</td>
<td>2.46 ± 0.9</td>
<td>0.98 MAM</td>
</tr>
<tr>
<td>USU-120</td>
<td>T1 High Cave top</td>
<td>1.82 ± 0.06</td>
<td>0.10</td>
<td>2.74 ± 1.2</td>
<td>1.28 MAM</td>
</tr>
<tr>
<td>USU-275</td>
<td>T1 Alcove middle</td>
<td>1.27 ± 0.06</td>
<td>0.09</td>
<td>4.93 ± 0.6</td>
<td>1.90 MAM</td>
</tr>
<tr>
<td>USU-118</td>
<td>T1 High Cave base</td>
<td>1.57 ± 0.09</td>
<td>0.09</td>
<td>3.87 ± 0.4</td>
<td>2.02 MAM</td>
</tr>
<tr>
<td>USU-180</td>
<td>T1 South park base</td>
<td>1.82 ± 0.06</td>
<td>0.10</td>
<td>5.03 ± 1.2</td>
<td>2.18 MAM</td>
</tr>
<tr>
<td>USU-185</td>
<td>T1 Alcove middle</td>
<td>1.83 ± 0.06</td>
<td>0.10</td>
<td>5.30 ± 1.0</td>
<td>1.01 MAM</td>
</tr>
<tr>
<td>USU-184</td>
<td>T1 Alcove base</td>
<td>1.03 ± 0.09</td>
<td>0.06</td>
<td>3.15 ± 0.4</td>
<td>1.37 MAM</td>
</tr>
<tr>
<td>USU-671sg</td>
<td>T2 Great Gallery Sect. B unit 8</td>
<td>3.17 ± 0.09</td>
<td>0.16</td>
<td>25.4 ± 4.4</td>
<td>4.43 MAM</td>
</tr>
<tr>
<td>USU-670</td>
<td>T2 Great Gallery Sect. B</td>
<td>1.88 ± 0.06</td>
<td>0.10</td>
<td>20.0 ± 2.4</td>
<td>2.48 MAM</td>
</tr>
<tr>
<td>USU-179</td>
<td>T2 South park top</td>
<td>1.80 ± 0.06</td>
<td>0.10</td>
<td>20.8 ± 2.1</td>
<td>2.81 MAM</td>
</tr>
<tr>
<td>USU-178</td>
<td>T2 South park middle</td>
<td>1.69 ± 0.06</td>
<td>0.09</td>
<td>20.4 ± 2.3</td>
<td>2.93 MAM</td>
</tr>
<tr>
<td>USU-272</td>
<td>T2 Rincon middle</td>
<td>1.45 ± 0.06</td>
<td>0.08</td>
<td>19.4 ± 2.3</td>
<td>2.97 MAM</td>
</tr>
<tr>
<td>USU-668</td>
<td>T2 Great Gallery Sect. A unit 4</td>
<td>1.79 ± 0.06</td>
<td>0.09</td>
<td>18.1 ± 2.4</td>
<td>2.45 CAM</td>
</tr>
<tr>
<td>USU-181</td>
<td>T2 Rincon base</td>
<td>1.12 ± 0.06</td>
<td>0.06</td>
<td>15.8 ± 2.4</td>
<td>4.18 MAM</td>
</tr>
<tr>
<td>USU-669</td>
<td>T2 Great Gallery Sect. B unit 1</td>
<td>1.49 ± 0.06</td>
<td>0.08</td>
<td>24.3 ± 4.9</td>
<td>4.91 MAM</td>
</tr>
<tr>
<td>Riso</td>
<td>Talus/Talus rock face</td>
<td>1.88 ± 0.06</td>
<td>0.08</td>
<td>1.67 ± 0.4</td>
<td>0.07 CAM</td>
</tr>
<tr>
<td>USU-8475g</td>
<td>Talus/Talus sediment</td>
<td>1.88 ± 0.06</td>
<td>0.08</td>
<td>1.53 ± 0.4</td>
<td>0.11 MAM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>¹⁴C sample</th>
<th>Calibrated Age (ka)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta #283086</td>
<td>0.87 ± 0.08</td>
</tr>
<tr>
<td>Beta #244296</td>
<td>1.04 ± 0.10</td>
</tr>
<tr>
<td>Beta #239779</td>
<td>1.49 ± 0.09</td>
</tr>
<tr>
<td>Beta #280472</td>
<td>9.75 ± 0.16</td>
</tr>
</tbody>
</table>

Footnote Author

- The age model and calibrated age errors do not include the radiocarbon dating errors.
- The age model is based on a MAM age model.
- The calibrated age is based on a MAM age model.

RESILIENCE

- **Maximum age constraint, terrace chronostratigraphy**: The Great Gallery lies along a reach of Horseshoe-Barrier Creek that is carved in sandstone of the Jurassic Navajo Formation. Farther upstream, the relatively wide canyon bottom...
with 0.5-1 m of clast-to-matrix supported, pebble-cobble gravel. As the drainage enters the Navajo reach, the preserved T2 deposit thickens to include more than 6 m of sandy alluvium atop the basal gravels. The inset T1 is up to 6 m thick and is a finer-grained package that occupies much of the valley bottom in the Navajo reach. It is comprised of medium beds of massive to upper-plane-bed, fine-medium sand interpreted as high energy channel deposits, as well as thinly bedded, fine sand with ripple cross-stratification and thin mud drapes interpreted as slackwater deposits.

The figures of the Great Gallery are situated 8-12 m above Horseshoe-Barrier Creek in an alcove. The stream aggradation recorded in the T2 deposit throughout the reach of the canyon buried this lower alcove, as indicated by the T2 remnant next to the Great Gallery, which butts the bedrock wall to a height above nearly all of the rock art (Fig. 3A). The bedrock bench below the panel is the locally-exhumed strath of the T2, and the remnant deposit embanked against the alcove includes interbedded lenses of bouldery talus fallen from the alcove and buried along the edge of the aggrading floodplain. The main rock art panel could not have been created until these deposits were subsequently incised by the stream, exposing the lower alcove. Nor could the rock art pre-date the T2 because the pigment would not have survived the burial, groundwater flow, exhumation, and then abrasion by subsequent flood discharges. Thus, the art is incontrovertibly younger than the top of the T2 alluvium, and moreover, it postdates most of the subsequent incision to where the inset T1 flood deposits lie along the channel. A conspicuous, etched horizon in the bedrock just below the toe of the Great Gallery figures is about the height of the top of the T1, and it may represent weathering related to those flood deposits (Fig. 3A). Alternatively, the etched horizon may mark where the water-saturated basal T2 deposit used to lie, and where local dissolution of bedrock cement has subsequently promoted preferential weathering.

Optically stimulated luminescence results on sediment in Table 1 are ordered by age, and these are all in agreement with radiocarbon results and in stratigraphic order, as illustrated in the primary sections of T2 and T1 studied at the Great Gallery and the nearby Alcove site, respectively (presented in Suppl. Info.). This highlights both the coherence of results and the ~5 ky hiatus marked by incision between deposition of T2 and T1 deposits. Most of the samples have dispersed and skewed equivalent-dose distributions characteristic of partial bleaching, which is to be expected with flood deposition in a canyon setting, and they are reported with analysis by a minimum-age model (ref. 33, full results in the Suppl. Info.). Two AMS radiocarbon dates from riparian-plant litter deposited within the T1 alluvium and one result from an ash and charcoal horizon in the upper T2 corroborate the OSL geochronology, with calibrated results converted to ka before 2010 AD in Table 1 for direct comparison to OSL ages. The age results, combined with their stratigraphic context, reconstruct fluvial activity over latest Quaternary time (Fig. 4). T2 deposition in the Navajo reach corresponds to the Pleistocene-Holocene transition, 15-8 ka. The highest OSL sample (USU-671sg) lies ~0.5 below the preserved top of the T2 at the Great Gallery, and so sometime after 8.0±1.1 ka deposition ceased and incision began (Fig. 3A). By ~3 ka, the basal flood deposits of the T1 were emplaced at essentially the same elevations as the modern wash throughout the drainage. Erosional bounding surfaces and chronology within the T1 suggest three distinct packages of flood deposits are preserved (31), dating to ~3 ka, 2.3-1.2 ka, and 1.1-0.8 ka (Fig. 4, Suppl. Info. 3).

The Great Gallery art must be younger than the episode of incision bracketed between the T2 and inset T1, which began sometime after ~8 ka. Indeed, incision through late Pleistocene talus and alluvium, and then bedrock, must have proceeded for
significant time until the lower alcove was fully exhumed and
available, and we suggest a conservative maximum age constraint
is ~6 ka (BC ~4000) (Fig. 2B). This reasoning alone makes
an early Archaic (3-5 BC 5000) origin for the Great Gallery and
probable, and any older hypotheses are ruled out. It is, in fact,
possible that formerly-preserved, 3.0-0.8 ka, T1 deposits provided
a standing platform for artists, marked by the etched horizon just
below the figures. The position of another example of BCS art
upstream along the upper drainage reach, the Blue-Eyed Moqui
Princess figures, supports these Great Gallery results. Two figures
at this locality are 4.5-6 m above the grade of the modern bedrock
channel they overlook, and they lie in a position directly below
the local T2 strath terrace. Likewise, the toes of these figures appear
abraded by later Holocene flooding.

Minimum age from timing of rockfall

Another clear cross-cutting relation at the Great Gallery
provides a minimum age—the rockfall that has removed parts of
the figures (Fig. 3A). In related work (15), we sampled the down-
-facing (buried) surface of one of the talus blocks directly below
this scar. This rock surface had preserved pigment of broken
figures, but the sample was taken ~35 cm away from any and
where no surface preparation (such as abrasion) had been done
by the artists. We OSL dated both the quartz grains from the rock
surface as well as the near-surface grains of loose sediment the
boulder landed upon. The two OSL results are the same within
error, ~800-900 years old (Table 1; ref. 15). Serendipitously,
a third, independent age determination for the rockfall event
comes from a leaf trapped between the talus boulder and un-
derlying sediment, dated by AMS radiocarbon methods to ~900
years old, again within error of both OSL results. These three
convergent dates provide a very solid minimum age constraint
of AD 1100, the height of the Fremont culture, ruling out the post-
Fremont hypothesis at this site (ref. 15, Fig. 2B).

Exposure duration from bedrock luminescence profile

The stimulation and release of trapped charge by sunlight
that resets luminescence signals happens at the surface of rocks as well
as sediment. Recent work takes advantage of how this “bleaching”
of rock penetrates through time into the subsurface up to a few
centimeters (16,17). The luminescence signal within the core of
rocks is saturated over geologic time due to ionization from local
radioactivity. The flux of sunlight at the surface penetrates and
relaxes this trapped charge population, but this effect attenuates
with depth and eventually comes into equilibrium with the dosing
rate within the rock. The measured depth and form of this lum-
inescence profile can be used to estimate the duration of surface-
exposure, particularly over decadal-to-millennial timescales. A
primer on this method is provided in the Suppl. Info. Briefly,
exposure time is calculated through fitting to a modeled, nested-
 exponential function incorporating the opacity of the rock and the
local daylight spectrum and calibrated with a sample of known
exposure duration (17). We have applied this technique to part
of the sample of the buried, unprepared surface of the rock-
fall clast at the Great Gallery, with calibration to a local Navajo
sandstone sample in an analogous position with respect to aspect
and shielding and with independently known exposure duration
(16).

The luminescence profile of the down-facing rockfall clast has
a different form (Fig. 5), because it was not only exposed to sun-
light for some duration in the alcove, but also subsequently buried
at the foot of the Great Gallery. Thus, the bleached grains in
the depth-profile had been shielded, dosed, and re-accumulated a
small luminescence signal. Indeed, it is that small re-accumulated
signal that we measured in the outermost grains for one of the
dates on the rockfall (15). Once recent dosing is accounted for,
the profile analysis provides an exposure-duration estimate of
~700 years for the fallen block (Fig. 5). A history of recurring
rockfalls incrementally deepening the Great Gallery alcove is
evident from both the talus interleaved in the T2 stratigraphy
and the sequence of exposed sheeting joints in the sandstone wall
(Fig. 3A). We therefore interpret the exposure age in terms of
the timing of a penultimate rockfall, which first uncovered the
rock surface about 700 years prior to the most recent rockfall at
AD ~1100. The uncertainty in this exposure-duration result only
expresses model fit and analytical error, but it confidently indi-
cates the pigmented rock surface was subject to several centuries
of sunlight exposure in the alcove, whereas exposure for over a
millennium is very improbable by our analysis in Sohbati et al
(ref. 17). Those several centuries before the rockfall represent the
window of time, AD 500-1100, during which BCS artists were
conservatively, when it was possible for the Great Gallery figures
to be painted (Fig. 2B). This is consistent with the tentative AD
~900 AMS age of Watchman (ref. 26) as well as the preservation
of the delicate rock art, suggesting it is not as old as some have
hypthesized.

DISCUSSION

Our ability to test hypotheses and understand prehistory increases
with each advance in geochronology, as experienced with AMS
radiocarbon dating and U-series dating of rock art (4,7). In
situations such as the Great Gallery pictographs where organic
material is completely absent from pigments or contamination is
an issue, or in the case of the countless petroglyphs directly etched
into rock, age control has nevertheless remained elusive. This
study illustrates that new techniques in OSL dating can help; these
have the advantage of analyzing deposits and surfaces associated
with rock art, rather than destructively analyzing the art itself.
Also, basic cross-cutting relations may be utilized more than
previously recognized. It is likely there are several other situations
where natural or man-made deposits, episodes of erosion, or
mass-movement events could provide constraints on the timing of
rock art or other archaeological features. In addition, the OSL-
exposure dating technique is broadly applicable where estimates
of rock-surface exposure on decade-to-millennial timescales are
needed, making it well suited for a wide range of applications in
archaeology and active surface processes.

Traditional OSL dating of alluvium along the Horseshoe
Barrier drainage produces a chronostratigraphy reflecting a paleo-
environmental context important for interpretations of regional
archaeology. Like other alluvial archives throughout the Colora-
dado Plateau, our record was generated by episodes of chang-
ing sediment transport, storage, and incision, which have long
been linked to changing paleoclimate, but in ways that are still
poorly understood (e.g. 34-37). The T2 deposit dates to the latest
Pleistocene-early Holocene transition, which in this area was a
time of highly variable climate, vegetation disturbance, and later,
an enhanced onset of the Southwest Monsoon (38,39). Middle
Holocene incision along the drainage may be driven by the mon-
soon, but also corresponds to a long-recognized episode of aridity
(38-40). Finally, paleoflood deposits of the T1 coincide with the
late Holocene increase in frontal-derived winter moisture (41)
and more variable climate with episodes of drought, flooding and
arroyo cutting. These have been linked to century-scale shifts in
El Nino patterns, the Medieval Warm Period (AD ~900-1300),
and the subsequent Little Ice Age (42,43). The Great Gallery was
painted in the overall wetter and more variable late Holocene,
during the transition to agrarian societies in this region, but
before the shifts in settlement patterns that coincide with drought
and arroyo cutting towards the end of the Medieval Warm Period
(43).

The timeframe for the Great Gallery type locality provides a
new context for BCS rock art within not only the paleoenviron-
mental record, but also, of course, the archaeology of the region.
The painting of the Great Gallery occurred during a window
between late Archaic (BM II) time, around AD 1, through the

Footline Author
introduction of maize and the bow and arrow to Utah, and on to the peak of the Fremont culture AD ~1100. The Archaic roots of the Fremont were noted long ago, and a variety of evidence indicates continuity between Archaic foragers and Fremont ties, culturalists between AD 1–400 (29). It appears that at that time, immigrant populations brought agriculture and village lifeways from the Four Corners region to north of the Colorado River and a landscape already inhabited by forager populations (44). There is some evidence for multiple ethnic/language groups among these immigrants, and the Fremont emerged from this diversity and interaction, with their cultural variation expressed in Fremont rock art (19, 44).

Likewise, as rock-art scholars have documented increasing variability in BCS art and noted overlaps of style and execution with neighboring rock art, it has been suggested that BCS art was a living tradition built over time as well as space (20). There are contrasts between Fremont and BCS rock art, and although our current chronology from part of the Great Gallery panel cannot specifically decipher whether BCS just preceded or coexisted with Fremont rock art, our results are consistent with there being multiple rock-art traditions within the greater Fremont temporal window. If the BCS was established before the origins of the Fremont, then it is nevertheless possible that it persisted during the development of the more distinctive Fremont rock art styles. Rather than an exclusive match of rock art styles to particular archaeological cultures, BCS rock art may have endured in the midst of human mobility, interaction, and new traditions appearing. As more age constraints are obtained on BCS panels, we can test whether it was produced over a considerable span of time. If so, then it was made by peoples of contrasting heritage, but who nevertheless maintained a common tradition, expressed in the compelling iconography of the Barrier Canyon style.

METHODS

Details of OSL methods, data analysis and data are found in the Suppl. Info., including a primer on the exposure-profile method. Full data and analysis for BCS rock-art and rock-profile dating results are found in ref. 15, 16, respectively. For the OSL alluvial chronology presented here, samples were collected in steel tubes, and representative sediment was collected within 30 cm for determination of dose rate. The bulk concentration of 40K, 238U and 232Th were measured using mass spectrometry, and dose-rates incorporating this, estimated water-content history, and cosmic contribution were calculated using the conversion factors of ref. 45. Optical measurements were conducted on a target grain-size fraction of quartz isolated and etched following routine procedures. Measurements with RISO T-Oriel DA-20 readers followed the single-aliquot regenerative protocol of Madsen and Murray (31) and with the reported age calculated from >20 aliquots that passed criteria of signal reproducibility and reliability.

The equivalent-dose distributions of most alluvial samples were analyzed with a minimum age model (MAM, ref. 33) to statistically isolate data from mineral grains that were completely bleached before burial. Use of the MAM was based partly on the dispersion and skewness of equivalent-dose distributions (Suppl. Info.), but also by requirements of field-stratigraphic coherence and the minimization of all OSL on an alluvial succession. These requirements provided a maximum age constraint, was analyzed using more intensive and accurate single-grain measurements (47) and calculated using a MAM. Total 1σ errors were reported in all OSL data presented here. OSL data have a significant source of error from equivalent dose scatter, uncertainties in the calculation of equivalent dose rates, and instrumental error.

ACKNOWLEDGEMENTS

We are grateful to Canyonlands National Park, especially archaeologist Chris Goetze, for permission and assistance in sampling. Initial funding was provided by the Foundation for the Scientific Study of Rock Art, Boulder, Colorado. Dr. Pete Poston graciously shared an AMS radiocarbon result (Beta-280472). The manuscript was improved by the comments of two anonymous reviewers.

32. Pederson JL (2009) Chronoradiography and geochronology constraining the age of Barrier Canyon style rock art on all OSL ages including random and systematic errors from...

